Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник физиологии Косицкого / 009 ЦНС Регуляция.doc
Скачиваний:
266
Добавлен:
25.03.2015
Размер:
29.01 Mб
Скачать

ГАМК содержится в нейронах спинного и головного мозга. При ее аппликации к различным нейронам ЦНС почти всегда возникает тормозной эффект, вследствие чего ГАМК рассматривают как наиболее распространенный медиатор синаптического тормо­жения. Так, тормозное действие ГАМК было продемонстрировано на клетках коры больших полушарий, нейронах ствола мозга, двигательных нейронах спинного мозга. ГАМК выполняет функцию медиатора при осуществлении как постсинаптического, так и пресинаптического торможения (см. ниже).

Медиаторная функция глицина ограничивается главным образом спинным мозгом, где это вещество выполняет роль медиатора постсинаптического торможения.

Так же как нейтральные аминокислоты, ГАМК и глицин после своего освобождения пресинаптическими окончаниями удаляются из синаптической щели путем захвата нервными и глиальными клетками.

Полипептиды. В последние годы показано, что в синапсах ЦНС медиаторную функ­цию могут выполнять некоторые полипептиды. К таким полипептидам относятся ве­щество Р, гипоталамические нейрогормоны, энкефалин и др.

Под названием «вещество Р» подразумевается группа агентов, впервые экстрагиро­ванных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особен­но высока их концентрация в области черного вещества. Наличие вещества Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Действительно, вещество Р оказывает возбуждающее действие на определенные нейроны спинного мозга.

Медиаторная роль других нейропептидов выяснена еще меньше.

Специфические рецепторы мембраны. Для химической передачи в синапсах необхо­димо существование особых мембранных рецепторов, с которыми реагируют химические медиаторы. Результатом этого взаимодействия является специфическое изменение свойств постсинаптической мембраны, приводящее к возбуждению или торможению постсинаптической клетки.

Роль мембранных рецепторов играют белковые молекулы, обладающие способ­ностью «узнавать» специфические для них вещества и вступать с ними в реакцию. Бел­ковые молекулы подвергаются конформационным изменениям, вследствие чего происхо­дит активация специальных ионных каналов мембраны (ионофоров). В результате этого процесса изменяется ионная проницаемость мембраны, что в свою очередь изменяет мембранную проводимость и приводит к уменьшению или увеличению трансмембранной разности потенциалов—деполяризации или гиперполяризации.

В настоящее время стало очевидным, что рецепторы мембраны довольно быстро обновляются. Они синтезируются, вероятно, в эндоплазматическом ретикулуме, включен­ном в аппарат Гольджи, и оттуда переносятся к поверхности нервной клетки и включают­ся в ее мембрану. Весь процесс занимает несколько часов.

Один и тот же медиатор может вступать в реакцию с различными рецепторами постсинаптической мембраны и вызывать противоположные эффекты. Так, в нейронах ЦНС обнаружены мускариновые и никотиновые холинорецепторы, воздействуя на кото­рые ацетилхолин вызывает различные изменения проницаемости постсинаптической мембраны. Показано существование различных рецепторов к катехоламинам. Накап­ливается все больше данных в пользу существования различных рецепторов к аминокислотам.

Способность одного и того же медиатора вызывать разнонаправленные изменения проницаемости постсинаптической мембраны является причиной того, что одни и те же медиаторы могут или возбуждать, или тормозить различные нервные клетки. В тех случаях, когда влияние химического медиатора более однотипно, как, например, в случае ГАМК и глицина, действие которых почти всегда приводит к увеличению хлорной прони­цаемости мембраны, функциональный эффект оказывается однозначным (тормозным в случае указанных аминокислот).

Рис. 66. Эквивалентная электрическая схема возбуждающего синаптического входа.

См—емкость мембраны; Rм, Riсопротивление мембраны; Ем—электродвижущая сила мембраны; Es—электродвижущая сила синаптического контакта; Rs—сопротивление синаптического контакта.

Рис. 67. Возбуждающий постсинаптический потенциал (ВПСП) и соответствующий ему постсинаптический ток в мотонейроне спин­ного мозга кошки.

а: I—ток при отсутствии фиксации потенци­ала; II — ВПСП; б: 1—ток, И—потенциал во время фиксации; в — график динамики постсинаптического тока (I) и ВПСП (II).

Возбуждение в центральной нервной системе

Хотя один и тот же химический медиатор, действуя на разные рецепторы постсинаптической мембраны в различных нервных клетках может вызывать как возбуждаю­щие, так и тормозные процессы, в ЦНС позвоночных можно выделить синапсы, которые выполняют однозначную функцию—возбуждения (возбуждающие синапсы) (рис. 66). Так, центральные отростки первичных афферентных нейронов всегда оказывают возбуж­дающее действие на нейроны спинного мозга. Другим примером возбуждающего действия у позвоночных является мотонейрон, активирующий не только мышцы, но и вставочные клетки Реншоу спинного мозга.

В возбуждающих синапсах медиатор, высвобождаемый пресинаптическим оконча­нием, вызывает развитие локального процесса деполяризации, обозначаемого как возбуждающий постсинаптический потенциал (ВПСП). Указанное название подчерки­вает тот факт, что ВПСП развивается в постсинаптической мембране.

В ЦНС млекопитающих ВПСП наиболее подробно изучены в спинальных мотонейро­нах, где имеется возможность избирательной активации однородных по составу афферентных волокон, которые образуют синапсы непосредственно на мотонейронах. Это позволяет изучать моносинаптические эффекты, не связанные с вовлечением в про­цесс возбуждения вставочных нейронов (рис. 67).

Амплитуда ВПСП зависит от исходного уровня мембранного потенциала. Смещение мембран­ного потенциала до величин, близких к нулю, обычно приводит к извращению (реверсии) знака ВПСП, т. е. суммарный постсинаптический ток в этих условиях течет в обратном направлении. Это означает, что активированная возбуждающим медиатором постсинаптическая мембрана ста­новится проницаемой не только для ионов натрия, но и для некоторых других ионов, содержащихся внутри и снаружи клетки. Опыты с введением внутрь нейрона С1~ показали, что при этом амплитуда ВПСП не изменяется. По-видимому, возникновение ВПСП связано с одновременным увеличением проницаемости постсинаптической мембраны для Na+ и К+, а также, возможно, Са2+. Увеличе­ние калиевой проницаемости приводит к уменьшению деполяризации, которая могла бы возникнуть за счет увеличения только натриевой или натриевой и кальциевой проницаемости.

Деполяризация нервной клетки в результате действия возбуждающего медиатора (ВПСП) может быть достигнута не только за счет увеличения проницаемости ее мембра­ны для Nа+ (или Са2+), но и за счет уменьшения проницаемости для К+.

Важным показателем эффективности синаптического возбуждения нервной клетки является способность возбуждающих синапсов вызывать возникновение потенциала действия. Необходимым условием для генерации потенциала действия является сниже­ние трансмембранной разности потенциалов постсинаптической мембраны до определен­ного критического уровня.

Условия возникновения потенциала действия в нервной клетке под влиянием си­наптического возбуждения в значительной степени обусловлены неодинаковой электри­ческой возбудимостью различных участков мембраны и пространственным распределени­ем различных возбуждающих синапсов. В большинстве центральных нейронов потенциал действия возникает в специальной низкопороговой области (обычно это зона аксонного холмика), откуда он распространяется по аксону и на мембрану сосед­них участков клетки. Указанный способ синаптического возбуждения нейрона очень важен для его интегративной функции, т. е. способности суммировать влияния, поступа­ющие на нейрон по разным синаптическим путям.