Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
89.49 Mб
Скачать

ГАМК содержится в нейронах спинного и головного мозга. При ее аппликации к различным нейронам ЦНС почти всегда возникает тормозной эффект, вследствие чего ГАМК рассматривают как наиболее распространенный медиатор синаптического торможения. Так, тормозное действие ГАМК было продемонстрировано на клетках коры больших полушарий, нейронах ствола мозга, двигательных нейронах спинного мозга. ГАМК выполняет функцию медиатора при осуществлении как постсинаптического, так и пресинаптического торможения (см. ниже).

Медиаторная функция глицина ограничивается главным образом спинным мозгом, где это вещество выполняет роль медиатора постсинаптического торможения.

Так же как нейтральные аминокислоты, ГАМК и глицин после своего освобождения пресинаптическими окончаниями удаляются из синаптической щели путем захвата нервными и глиальными клетками.

Полипептиды. В последние годы показано, что в синапсах ЦНС медиаторную функцию могут выполнять некоторые полипептиды. К таким полипептидам относятся ве-

щество Р, гипоталамические нейрогормоны, энкефалин и др.

Под названием «вещество Р» подразумевается группа агентов, впервые экстрагированных из кишечника. Эти полипептиды обнаруживаются во многих частях ЦНС. Особенно высока их концентрация в области черного вещества. Наличие вещества Р в задних корешках спинного мозга позволяет предполагать, что оно может служить медиатором в синапсах, образуемых центральными окончаниями аксонов некоторых первичных афферентных нейронов. Действительно, вещество Р оказывает возбуждающее действие на определенные нейроны спинного мозга.

Медиаторная роль других нейропептидов выяснена еще меньше.

Специфические рецепторы мембраны. Для химической передачи в синапсах необходимо существование особых мембранных рецепторов, с которыми реагируют химические медиаторы. Результатом этого взаимодействия является специфическое изменение свойств постсинаптической мембраны, приводящее к возбуждению или торможению постсинаптической клетки.

Роль мембранных рецепторов играют белковые молекулы, обладающие способностью «узнавать» специфические для них вещества и вступать с ними в реакцию. Белковые молекулы подвергаются конформационным изменениям, вследствие чего происходит активация специальных ионных каналов мембраны (ионофоров). В результате этого процесса изменяется ионная проницаемость мембраны, что в свою очередь изменяет мембранную проводимость и приводит к уменьшению или увеличению трансмембранной разности потенциалов — деполяризации или гиперполяризации.

В настоящее время стало очевидным, что рецепторы мембраны довольно быстро обновляются. Они синтезируются, вероятно, в эндоплазматическом ретикулуме, включенном в аппарат Гольджи, и оттуда переносятся к поверхности нервной клетки и включаются в ее мембрану. Весь процесс занимает несколько часов.

Один и тот же медиатор может вступать в реакцию с различными рецепторами постсинаптической мембраны и вызывать противоположные эффекты. Так, в нейронах ЦНС обнаружены мускариновые и никотиновые холинорецепторы, воздействуя на которые ацетилхолин вызывает различные изменения проницаемости постсинаптической мембраны. Показано существование различных рецепторов к катехоламинам. Накапливается все больше данных в пользу существования различных рецепторов к аминокислотам.

Способность одного и того же медиатора вызывать разнонаправленные изменения проницаемости постсинаптической мембраны является причиной того, что одни и те же медиаторы могут или возбуждать, или тормозить различные нервные клетки. В тех случаях, когда влияние химического медиатора более однотипно, как, например, в случае ГАМК и глицина, действие которых почти всегда приводит к увеличению хлорной проницаемости мембраны, функциональный эффект оказывается однозначным (тормозным в случае указанных аминокислот).

101

ВОЗБУЖДЕНИЕ В ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЕ

Хотя один и тот же химический медиатор, действуя на разные рецепторы постсинаптической мембраны в различных нервных клетках может вызывать как возбуждающие, так и тормозные процессы, в ЦНС позвоночных можно выделить синапсы, которые выполняют однозначную функцию — возбуждения (возбуждающие синапсы) (рис. 66). Так, центральные отростки первичных афферентных нейронов всегда оказывают возбуждающее действие на нейроны спинного мозга. Другим примером возбуждающего действия у позвоночных является мотонейрон, активирующий не только мышцы, но

ивставочные клетки Реншоу спинного мозга.

Ввозбуждающих синапсах медиатор, высвобождаемый пресинаптическим оконча-

нием, вызывает развитие локального процесса деполяризации, обозначаемого как

возбуждающий постсинаптический потенциал (ВПСП). Указанное название подчерки-

вает тот факт, что ВПСП развивается в постсинаптической мембране.

В ЦНС млекопитающих ВПСП наиболее подробно изучены в спинальных мотонейронах, где имеется возможность избирательной активации однородных по составу афферентных волокон, которые образуют синапсы непосредственно на мотонейронах. Это позволяет изучать моносинаптические эффекты, не связанные с вовлечением в процесс возбуждения вставочных нейронов (рис. 67).

Амплитуда ВПСП зависит от исходного уровня мембранного потенциала. Смещение мембранного потенциала до величин, близких к нулю, обычно приводит к извращению (реверсии) знака ВПСП, т. е. суммарный постсинаптический ток в этих условиях течет в обратном направлении. Это означает, что активированная возбуждающим медиатором постсинаптическая мембрана становится проницаемой не только для ионов натрия, но и для некоторых других ионов, содержащихся внутри и снаружи клетки. Опыты с введением внутрь нейрона С1- показали, что при этом амплитуда ВПСП не изменяется. По-видимому, возникновение ВПСП связано с одновременным увеличением проницаемости постсинаптической мембраны для Na2+ и К+, а также, возможно, Са2+. Увеличение калиевой проницаемости приводит к уменьшению деполяризации, которая могла бы возникнуть за счет увеличения только натриевой или натриевой и кальциевой проницаемости.

Деполяризация нервной клетки в результате действия возбуждающего медиатора (ВПСП) может быть достигнута не только за счет увеличения проницаемости ее мембраны для Na+ (или Са2+), но и за счет уменьшения проницаемости для К+-

102

Важным показателем эффективности синаптического возбуждения нервной клетки является способность возбуждающих синапсов вызывать возникновение потенциала действия. Необходимым условием для генерации потенциала действия является снижение трансмембранной разности потенциалов постсинаптической мембраны до определен-

ного критического уровня.

Условия возникновения потенциала действия в нервной клетке под влиянием синаптического возбуждения в значительной степени обусловлены неодинаковой электрической возбудимостью различных участков мембраны и пространственным распределением различных возбуждающих синапсов. В большинстве центральных нейронов потенциал действия возникает в специальной низкопороговой области (обычно это зона аксонного холмика), откуда он распространяется по аксону и на мембрану соседних участков клетки. Указанный способ синаптического возбуждения нейрона очень важен для его интегративной функции, т. е. способности суммировать влияния, поступающие на нейрон по разным синаптическим путям.

ТОРМОЖЕНИЕ В ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЕ

Одним из фундаментальных свойств ЦНС является способность к торможению. Явление центрального торможения было открыто в 1863 г. И. М. Сеченовым, обнаружившим возникновение торможения спинальных центров лягушки при раздражении структур среднего мозга. В дальнейшем была выявлена возможность торможения спинальных реакций не только при раздражении надсегментарных образований, но и нервов противоположной стороны тела. Это открытие позволило подойти к установлению реципрокных отношений между процессами возбуждения и торможения в ЦНС. Реципрокный характер возбуждающих и тормозных влияний в спинном мозге показан учеником И. М. Сеченова Н. Е. Введенским и подробно проанализирован английским нейрофизиологом Ч. Шеррингтоном.

Важным шагом в выяснении природы центрального торможения оказалось выявление самостоятельного значения торможения для работы нервных центров. Торможение нельзя свести ни к утомлению нервных центров, ни к их перевозбуждению или католи-

ческой депрессии нервных клеток. Торможение самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения. В от-

личие от процесса возбуждения, который может проявляться в двух основных формах — распространяющихся потенциалов действия и локальных потенциалов, торможение может развиваться только в форме локального процесса и поэтому всегда связано с существованием специфических тормозных синапсов (рис. 68).

Функция тормозных синапсов однозначна (они всегда вызывают только торможение), образующие их пресинаптические окончания относятся к аксонам так называемых тормозных нейронов, угнетающих активность всех нервных клеток, которые они иннервируют. Примером тормозных нейронов в спинном мозге являются вставочные нейроны Реншоу, в головном мозге — грушевидные нейроны {нейроны Пуркинье) коры мозжечка.

С помощью микроэлектродов установлено, что синаптическое торможение может вести к подавлению активности нейрона, имеющего тормозной синапс, вследствие изменения свойств постсинаптической мембраны нейрона (так называемое постсинаптическое торможение) или в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом уровне (так называемое пресинаптическое торможение). Особенно широкое распространение в ЦНС имеет постсинаптическое торможение.

Постсинаптическое торможение. Медиатор, выделяемый пресинаптическими окончаниями тормозных синапсов, изменяет свойства постсинаптической мембраны таким образом, что способность нервной клетки генерировать процессы возбуждения (ВПСП или потенциал действия) подавляется. Поэтому данное явление принято обозначать как постсинаптическое торможение, а лежащее в его основе изменение в постсинаптической мембране — тормозной постсинаптический потенциал (ТПСП).

103

Специфика тормозных синаптических эффектов была впервые наиболее подробно изучена на мотонейронах млекопитающих, а в дальнейшем — на многих нейронах мозга, включая нервные клетки мозгового ствола, гиппокампа и коры.

В мотонейронах спинного мозга возникновение ТПСП в ответ на раздражение афферентных волокон, идущих от мышц-антагонистов, обязательно связано с включением

втормозной процесс дополнительного звена — специального вставочного тормозного нейрона, аксональные окончания которого выделяют медиатор (вероятнее всего это глицин), вызывающий развитие ТПСП в постсинаптической мембране. Пример ТПСП

вмотонейроне спинного мозга кошки показан на рис. 69. Как видно на этом рисунке, временное течение ТПСП почти совпадает с временным течением ВПСП. И для ВПСП, и для ТПСП характерна более быстрая фаза нарастания и более длительная, убывающая по экспоненте фаза спада. ТПСП, возникающие при раздражении мышечных нервов,

можно рассматривать как результат почти синхронного вовлечения совокупности тормозных нейронов. ТПСП, вызываемые прямым микроэлектродным раздражением одного тормозного нейрона, имеют сходные временные характеристики, но значительно меньшую величину.

Первоначально было сделано заключение, что торможение всегда развивается в результате гиперполяризации постсинаптической мембраны, так как тормозной медиатор увеличивает ее проницаемость для К+- В дальнейшем было установлено, что постсинаптическое торможение не обязательно сопровождается гиперполяризацией мембраны, так как более важное значение имеют лежащие в основе ТПСП сложные изменения ионной проводимости постсинаптической мембраны.

ТПСП обнаруживает очень высокую чувствительность к сдвигам мембранного потенциала, увеличиваясь при деполяризации и уменьшаясь при гиперполяризации. Когда последняя приводит к увеличению мембранного потенциала до 80 мВ, ТПСП превращается в деполяризационный ответ. Однако и в этом случае его тормозящее действие сохраняется.

Извращение ТПСП объясняется тем, что тормозной медиатор повышает проницаемость постсинаптической мембраны для С1- В нормальных условиях концентрации С1- во внеклеточной среде превышает его содержание в нейроплазме. Во время развития ТПСП отрицательно заряженные ионы хлора устремляются внутрь клетки, увеличивая трансмембранную разность потенциалов. Когда концентрация С1- в нейроплазме превышает его содержание в наружной среде, тормозной медиатор приводит к движению С1- из клетки наружу, что приводит к ее деполяризации в результате потери отрицательных зарядов. Таким образом, тормозная постсинаптическая мембрана мотонейронов и других нейронов ЦНС действует как образование селективное к С1-, что, вероятно, обусловлено наличием положительных зарядов в стенках ионных каналов мембраны.

104

Физический смысл ТПСП всегда остается неизменным, он стремится сдвинуть мембранный потенциал в сторону, противоположную той, которая необходима для развития возбуждающего эффекта.

Учитывая природу тормозного процесса, можно сделать вывод, что эффективность тормозных синапсов во многом зависит от их локализации на поверхности клетки. Тормозной эффект тем более значителен, чем ближе тормозной синапс расположен к месту генерации потенциала действия. Вследствие этого тормозные синапсы локализованы главным образом на теле нервных клеток вблизи от триггерной зоны аксонного холмика.

Поскольку функция тормозных синапсов заключается именно в подавлении или ограничении процессов возбуждения, развивающихся в постсинаптической мембране, важно рассмотреть особенности взаимодействия возбуждающих и тормозных постсинаптических эффектов.

В клетках ЦНС, получающих как возбуждающие, так и тормозные синаптические входы, их взаимодействие может быть рассмотрено на примере суммации ВПСП и ТПСП. Исследования, проведенные с помощью усреднения постсинаптических потенциалов на вычислительной машине, показали, что суммация ВПСП и ТПСП обычно имеет нелинейный характер (рис. 70).

Поэтому суммарная реакция нервной клетки на сочетанную активацию взаимодействующих входов значительно меньше алгебраической суммы обоих потенциалов. Наибольшая степень нелинейности наблюдается при совмещении начальных фаз ВПСП и ТПСП, т. е. в момент, когда лежащие в их основе изменения проводимости достигают максимума. Это полностью согласуется с тем, что эффект постсинаптического торможения обусловлен в первую очередь повышением проводимости постсинаптической мембраны.

Пресинаптическое торможение. Синаптическое торможение, приводящее к уменьшению эффективности возбуждающих синаптических влияний, может развиваться не только на уровне постсинаптической мембраны (как это было рассмотрено выше), но еще в пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким бы то ни было изменениям.

Пресинаптическое торможение обнаружено в различных отделах ЦНС. Наиболее часто оно выявляется в структурах мозгового ствола и особенно в спинном мозге.

Так же как и постсинаптическое, пресинаптическое. торможение осуществляется посредством специальных тормозных вставочных нейронов.

Структурной основой пресинаптического торможения являются аксоаксонные синапсы, образованные окончаниями аксонов тормозных вставочных нейронов и аксональными окончаниями возбуждающих нейронов. В этом случае окончание аксона тормозного нейрона является пресинаптическим по отношению к возбуждающему окончанию, которое в свою очередь будучи постсинаптическим по отношению к тормозному окончанию, является пресинаптическим по отношению к активируемой им нервной клетке (рис. 71). Импульсы в пресинаптическом тормозном аксоне высвобождают медиатор (в спинном мозге это вероятнее всего γ-аминомасляная кислота), который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для С1~. Предполагается, что указанная деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание, что в свою очередь уменьшает количество высвобождаемого им медиатора, вследствие чего амплитуда возбуждающего постсинаптического потенциала падает.

Другим механизмом пресинаптического торможения может быть уменьшение входящего внутрь потока Са2+, воздействующего на электросекреторную связь. И в этом случае пресинаптическое торможение приводит к уменьшению числа квантов медиатора, высвобождаемого возбуждающим пресинаптическимокончанием.

У млекопитающих продолжительность пресинаптического торможения значительно превосходит продолжительность постсинаптического торможения. Большая длительность пресинаптического торможения, по-видимому, обусловлена ритмической активностью тормозных вставочных нейронов.

Пресинаптическое торможение особенно эффективно при обработке информации, поступающей к нейрону по различным пресинаптическим путям. В этом случае возбуждение, поступающее по одному из синаптических входов, может быть избирательно уменьшено или даже полностью подавлено при отсутствии влияния на другие входы. Подобного результата нельзя достичь путем воздействия на проводимость постсинаптической мембраны, как это имеет место при постсинаптическом торможении, влияющем на всю нервную клетку.

ИНТЕГРАЦИЯ СИНАПТИЧЕСКИХ ВЛИЯНИЙ

Каждая клетка ЦНС имеет множество синаптических контактов с различными нейронами. Так, на одной клетке Пуркинье коры мозжечка насчитывают до 200 000 синапсов, число синапсов на мотонейронах млекопитающих составляет от 10 000 до 20 000.

Дивергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками носит название дивергенции. Например, центральные окончания аксонов первичного афферентного нейрона образуют синапсы на многих мотонейронах-синергистах, на вставочных нейронах, осуществляющих торможение мотонейронов-антагонистов, и на клетках, дающих начало дорсальному спиноцеребеллярному восходящему тракту. Благодаря процессу дивергенции одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, а каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Конвергенция. Схождение различных путей проведения нервных импульсов к одной

итой же нервной клетке носит название конвергенции. Простейшим примером конвергенции служит факт получения каждым мотонейроном импульсов от совокупности первичных афферентных нейронов. На рис. 72 схематически показана конвергенция центральных окончаний первичных афферентных волокон на одном и том же мотонейроне

ипродемонстрирован конкретный пример развития ВПСП в мотонейроне 3 различными пресинаптическими элементами.

Если в приведенном выше примере конвергенция ограничивается эффектами, вызываемыми однотипными нейронами (все они относятся к сенсорным нейронам, проводя-

106

щим в спинной мозг импульсы от мышечных рецепторов растяжения), то значительная часть нервных клеток ЦНС имеет синапсы с нейронами различного типа, обеспечивающими конвергенцию влияний из разных источников. Например, к мотонейронам спинного мозга, кроме первичных афферентных волокон, конвергируют волокна различных нисходящих трактов, берущих начало в супраспинальных и собственно спинальных центрах, аксоны возбуждающих и тормозных вставочных нейронов. Поэтому мотонейроны рассматриваются как общий конечный путь многочисленных нервных структур, связанных с регуляцией моторной функции ЦНС. Принцип общего конечного пути был введен в физиологию нервной системы Ч. Шеррингтоном. Он показывает, каким образом одна и та же конечная реакция, проявляющаяся активацией определенной группы мотонейронов, может быть получена при раздражении различных нервных структур. Данный принцип имеет первостепенное значение для анализа рефлекторной деятельности (см. ниже) нервной системы.

Синаптнческое взаимодействие. Конвергенция различных синаптических входов на одной нервной клетке обеспечивает возможность их взаимодействия. Так, при активации различных возбуждающих синапсов происходит пространственная суммация ВПСП. Пространственная суммация возбуждающих синаптических влияний имеет важное значение для возникновения импульсной активности в нервной клетке, так как деполяризации, создаваемой одним синаптическим входом, часто бывает недостаточно для достижения порогового уровня и генерации потенциала действия. Пространственная и временная суммация ВПСП способна приводить к длительной деполяризации постсинаптической мембраны, что обеспечивает возникновение ритмической импульсной активности нервной клетки.

Возникающие при активации различных синапсов ВПСП могут суммироваться линейно. При линейной суммации общая деполяризация равна арифметической сумме деполяризаций, создаваемых каждым входом в отдельности. Возможна и нелинейная суммация, когда общая деполяризация нейрона меньше арифметической суммы деполяризаций, создаваемых каждым возбуждающим синаптическим входом. Пример линейной суммации ВПСП, возникающих в одной и той же нервной клетке при раздражении разных пресинаптических путей, показан на рис. 73.

Линейный характер суммации наблюдается в том случае, когда взаимодействующие возбуждающие синапсы, конвергирующие на данном нейроне, расположены на таком расстоянии друг от друга, когда повышение проводимости постсинаптической мембраны, развивающееся под влиянием возбуждающего медиатора, не оказывает шунтирующего влияния на соседний вход. Наоборот, при достаточно близкой локализации взаимодействующих синаптических входов нервной клетки увеличение проводимости постсинаптической мембраны будет шунтировать и, следовательно, умень-

107

шать деполяризацию, создаваемую соседним входом. Как отмечалось выше, суммация возбуждающих и тормозных постсинаптических потенциалов обычно развивается нелинейно. Чем выше степень нелинейности, тем сильнее выражен тормозной эффект.

Кроме взаимодействия непосредственно на постсинаптической мембране, различные синаптические влияния могут взаимодействовать еще и на пути к нервной клетке. Одним из примеров такого взаимодействия может служить рассмотренное выше пресинаптическое торможение. Кроме того, на пресинаптическом уровне может развиваться и процесс облегчения. Такое пресинаптическое или гетеросинаптическое облегчение заключается в увеличении эффективности одного синаптического возбуждающего входа в результате активации другого, когда облегчение развивается не на уровне постсинаптической мембраны нейрона, а вследствие взаимодействия на пути к нему.

Сами нервные клетки нередко обладают возможностью регулировать величину поступающих к ним сигналов. Такой механизм, получивший название обратной связи, заключается в том, что коллатерали аксонов нервной клетки могут устанавливать синаптические контакты со специальными вставочными нейронами, роль которых заключается в воздействии на нейроны или аксональные окончания путей, конвергирующих на нервной клетке, посылающей эти аксонные коллатерали. Так, например, возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но и через коллатерали возбуждает специальные тормозные клетки Реншоу. Аксоны клеток Реншоу в свою очередь устанавливают синаптические связи с мотонейронами. Поэтому, чем сильнее импульсация мотонейрона, тем больше активируются клетки Реншоу и тем значительнее они тормозят мотонейроны, уменьшая частоту их импульсации (так называемое возвратное торможение).

Благодаря наличию обратных связей, степень возбуждения нейронов различных нервных центров может строго согласовываться как с интенсивностью приходящих к ним возбуждающих влияний, так и с интенсивностью импульсации на выходе нейронов и, сле-

довательно, с интенсивностью развиваемого рабочего эффекта. Так, мотонейроны получают информацию о сокращениях мышцы от сухожильных и мышечных рецепторов. Эти импульсы, сигнализирующие о состоянии двигательного аппарата, позволяют корригировать активность этих мотонейронов. Афферентные импульсы, поступающие от сосудов, органов дыхания, пищеварения и выделения, постоянно корригируют деятельность нейронов, участвующих в поддержании уровня артериального давления и регуляции других вегетативных функций.

РЕФЛЕКТОРНАЯ ДЕЯТЕЛЬНОСТЬ ЦНС

Взаимодействие нервных клеток составляет основу целенаправленной деятельности нервной системы и прежде всего осуществления рефлекторных актов.

Как уже было сказано, принцип рефлекторной (отражательной) деятельности нервной системы был выдвинут еще в XVII в. французским философом и математиком Р. Декартом. Сам термин «рефлекс» был предложен в XVIII в. чешским физиологом Прохазкой. Весь последующий ход изучения деятельности нервной системы убедительно показал, что ее ответы на различные раздражения протекают по рефлекторному принципу. Рефлекторную природу психической деятельности обосновал И. М. Сеченов.

Рефлекторная дуга. Основой рефлекторного ответа является так называемая дуга рефлекса — комплекс специфически организованных нервных элементов, взаимодействие которых необходимо для осуществления рефлекторного акта. Рефлекторная дуга состоит из афферентной, центральной и эфферентных частей, связанных между собой с помощью

синаптических соединений (рис. 74).

Афферентная часть представлена теми нервными элементами, которые формируют и проводят в центральном направлении нервные импульсы, необходимые для деятельности всей рефлекторной дуги. Поскольку возникновение афферентных импульсов связано с активацией специфических рецепторов, совокупность рецепторов, раздражение которых

108

вызывает определенный рефлекс, называют рецептивным полем рефлекса. Следует отметить, что раздражение одних и тех же рецепторов не всегда вызывает один и тот же тип рефлекторного ответа, а могут отмечаться различные рефлексы в зависимости от того, к каким центральным структурам импульсы поступают по первичным афферентным нейронам. Кроме того, в рецептивном поле одного рефлекса могут находиться и различные по функции рецепторы. Так, сгибательный рефлекс может вызываться раздражением тактильных рецепторов кожи или мышечных рецепторов.

Поступающие по афферентным путям нервные импульсы с помощью синаптических переключений активируют различные нейроны ЦНС. Часть афферентных импульсов, необходимых для возникновения рефлекторного ответа, переключается также на нейроны восходящих трактов и отражается в сознании. Однако многие рефлексы возникают и без участия сферы сознания, так как для их осуществления достаточно участие подкорковых зон ЦНС. Именно поэтому многие рефлекторные акты могут сохраняться даже после разрушения большей части ЦНС. Рефлекторная деятельность может осуществляться

иодним изолированным сегментом спинного мозга, выделенным из организма и перфузируемым искусственным путем.

Моно- и полисинаптические рефлексы. Центральная часть рефлекса может включать несколько последовательных нейронов, соединенных синаптическими контактами. Тогда рефлекс носит название полисинаптического. В простейшем случае импульсы, поступающие в ЦНС по афферентному пути, переключаются непосредственно на эфферентный нейрон. Поскольку в пределах ЦНС рефлекторная дуга такого рефлекса имеет только один синапс (например, синапс между центральными окончаниями мышечных афферентов и мотонейронами), он носит название моносинаптического. Примером моно-

синаптического рефлекса является сухожильный рефлекс, или рефлекс растяжения.

Врезультате возникновения импульсов в эфферентных нейронах происходит активация эфферентной части рефлекса и его реализация. Рефлексы очень многообразны

иих исполнительная часть включает различные органы и системы организма. В большинстве своем рефлексы служат для защиты организма и приспособления его к изменениям окружающей и внутренней среды. С их помощью адекватно координируются непроизвольные акты организма. Секреция желез, движения внутренних органов, реакция

109

сердца и сосудов, скелетной мускулатуры тонко контролируются координированными рефлекторными актами.

Большинство детальных сведений о рефлекторных актах было получено благодаря изучению мышечных ответов, поскольку последние дают объективную и хорошо измеряемую оценку рефлекса. Примером двигательного рефлекса у человека является коленный рефлекс. Поскольку рефлекс не может быть вызван после того, как соответствующий центр разрушен или поврежден, наличие или отсутствие определенных рефлексов имеет важное диагностическое значение. Так, наличие коленного рефлекса свидетельствует о сохранности моторных центров поясничного сегмента спинного мозга. Рефлекторное сокращение зрачка в ответ на освещение показывает, что ядро III черепного нерва и соответствующие зрительные и эфферентные пути являются интактными.

Характер рефлекса в значительной степени зависит от интенсивности раздражения и числа активируемых рецепторов. Усиление раздражения приводит к расширению рецептивного поля рефлекса, в результате чего вовлекается большее число центральных нейронов. Указанное явление называется иррадиацией возбуждения. Процесс иррадиации в значительной степени зависит от того, что отдельные афферентные нейроны вызывают подпороговую деполяризацию центральных нейронов. При увеличении числа активированных афферентных нейронов в результате процессов пространственной суммации в большем числе центральных нейронов синаптическое возбуждение достигает порога и приводит к их импульсной активности.

Усиление раздражения вызывает также возрастание частоты импульсации в афферентных волокнах, что в свою очередь увеличивает ответы центральных нейронов вследствие временной суммации возбуждающих синаптических влияний.

Взаимодействие рефлексов. Различные рефлекторные реакции могут взаимодействовать между собой. Примером такого взаимодействия является феномен доминанты А. А. Ухтомского. Образование в ЦНС центра повышенной возбудимости приводит к тому, что раздражение самых различных рецептивных полей начинает вызывать рефлекторный ответ, характерный для деятельности этой доминантной области.

Доминантный очаг в ЦНС может возникать под влиянием разных факторов, например в результате гормональных воздействий. В частности, в период спаривания половые гормоны повышают возбудимость моторных центров шейного утолщения спинного мозга амфибий

110