Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Медицина катастроф / Курашвили_Л_В_,_Васильков_В_Г_Липидный_обмен_при_неотложных_состояниях

.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
1.63 Mб
Скачать

Л.В.Курашвили, В.Г.Васильков

Дальнейшее превращение эйкозаноидов зависит от места их локализации. В неповрежденной стенке эйкозаноиды превращаются в простациклин и препятствуют агрегации тромбоцитов. В тромбоцитарных агрегатах эндопероксиды образуются постоянно, они быстро превращаются в простациклин клетками эндотелия сосудистой стенки под действием фермента циклооксигеназы, что препятствует образованию тромбоцитарного агрегата

В местах повреждения на эндопероксиды действует фермент тромбоксансинтетаза, и эндопероксиды превращаются в тромбоксан А2, который относится к мощным вазоконстрикторам и одновременно способствует немедленному высвобождению гранул из тромбоцитов. Это приводит к сужению просвета сосудов и агрегации тромбоцитов.

Агрегация тромбоцитов - склеивание их между собой и наложение на участки повреждения - осуществляется при стимуляции АДФ, серотонином, коллагеном, катехоламинами, ристомицином.

Итак, сосудисто-тромбоцитарный гемостаз - это процесс формирования тромба. Тромбоциты прилипают с участием белков - посредников друг к другу и эндотелию сосудов и формируют тромб, выбрасывая (секретируя) в просвет сосуда содержимое гранул.

Синхронно мембранные фосфолипиды способствуют включению внешнего и внутреннего механизмов системы фибринолиза, которые убирают отработанный сгусток.

Липидный обмен в структуре адаптационных механизмов при неотложных состояниях

При оценке содержания липидов и скорости их накопления в организме при различных экстремальных состояниях часто ограничиваются изучением уровня отдельных фракций липидов и липопротеидов

всыворотке крови. Однако, как указывают многие исследователи, в 20-50 % случаев при остром инфаркте миокарда, инсульте, заболеваниях печени и других состояниях показатели липидного обмена остаются нормальными (Никитин Ю.П., и соавт. 1985; Барановский П.В., Мельник И.А., 1987; Курашвили Л.В.и соавт.1992).

В.Н.Титов (1996) считает, что подобные состояния связаны с внутритканевыми факторами регуляции из-за изменения соотношения

вних липидных компонентов.

Нарушение липидного обмена при стрессе может быть обусловлено ансамблем гормонов, главным компонентом которого является глюкокортикоиды (Меерсон Ф.З., 1988; Микаэлян Н.П., Князев Ю.А., 1994). Для синтеза глюкокортикоидов используется холестерин. При

"Липидный обмен при неотложных состояниях"

41

Л.В.Курашвили, В.Г.Васильков

экстремальных состояниях количество холестерина в надпочечниках может быть недостаточным, что способствует повышению доставки холестерина с фракцией липопротеидов низкой плотности (ЛПНП). При этом одновременно нарастает уровень липопротеидов высокой плотности (ЛПВП-3) и эфиров холестерина в них за счет повышения активности лецитинхолестеринацилтрансферазы (ЛХАТ) и эфиро - холестеринпереносящих белков, фракция ЛПВП-2 при этом снижается

(Панин Л.Е.,1983; Хомуло П.С., 1989).

Так, в ряде работ (Башкаревич Н.А., 1985; Курашвили Л.В. и соавт. 1986; Гурин В.Н., 1986; Робсон М.К., Хеггер Дж. П., 1990) проведено изучение роли липидов в адаптации организма к разным температурным условиям.

Следствием термического воздействия является деструкция тканей в области поражения, из зоны повреждения которой идет потоком сигналов в центральную нервную систему, и приводит к возбуждению гипоталамических нейронов, стимулирующих гипофизарно - надпочечниковую систему (Вихреев В.С., Бурмистрова В.М., 1986; Карваяла Х.Ф., Паркса Д.Х., 1990), результатом чего является гормональный дисбаланс, приводящий к функциональным и морфологическим изменениям внутренних органов и систем организма. Ожоговый шок и острая токсемия (острые периоды ожоговой болезни) являются сложным динамическим процессом, возникающим в ответ на термическое повреждение. Они сочетается с развитием неспецифической воспалительной реакции, сопровождающейся активацией перекисного окисления липидов, стрессорной ферментемией (Кузнецова Т.И., Куликов В.И., 1992; Авдонин П.В., Ткачук В.А., 1994 Суслова И.В., и соавт., 1995; Куликов В.И., Музя Г.И., 1996). Это свидетельствует о прямом повреждении клеток. Повреждающий фактор перерастает в структурно - метаболические нарушения вплоть до необратимых, которые охватывают все органы, ткани и системы.

Повстяной Н.Е., Козинец Г.П. (1984), Мареева Т.Е.и соавт.(1990), Хачатурьян М.Л. и соавт. (1996) сообщают, что механизм повреждений при гипо- и гипертермии связан с активацией реакций перекисного окисления полиеновых жирных кислот, накоплением токсических продуктов - кетонов, эпоксидов, гидроперекисей.

По данным Повстяной Н.Е., Козинец Г.П. (1984), Башкаревич Н.А. (1985), Вихреева В.С., Бурмистрова В.М. (1986), Микаэлян Н.П., Князева Ю.А. (1994) в механизме развития ожоговой болезни имеют значение те же три фактора, которые присущи в той или иной степени любой механической травме. Нейрорефлекторный и нейрогуморальный обусловлены болевым воздействием механической травмы на

42 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

организм, и токсический фактор связан с поступлением в кровь продуктов распада из обожженных тканей и накоплением их в организме вследствие нарушения функции ряда органов и систем, плазмопотери.

Все эти три фактора имеют ведущее значение в патогенезе развития заболевания. Степень их выраженности связана с глубиной и площадью поражения тканей. Эти расстройства проявляются различными клиническими симптомами и отражают сложные функциональные, морфологические расстройства и биологические изменения в организме.

По мнению Т.Czaga, N.Rizzo (1975), функциональные изменения в печени возникают у всех обожженных, даже с небольшой площадью ожога (Курашвили Л.В.и соавт.1996). Нарушения функции печени соответствуют тяжести клинической картины, глубине и площади ожоговой поверхности (Шнейвайс В.Б. и соавт., 1994).

Ожоговая болезнь сопровождается нарушениями обмена веществ на уровне почти всех органов и тканей. На увеличение метаболических повреждений в органах и тканях у больных ожоговой болезнью указывают многие авторы (Федоров Н.А и соавт., 1985; Робсон М.К., Хеггер Дж. П., 1990; Зубарева Е.В., Сеферова Р.И., 1992).

Одной из причин повышения активности метаболических процессов является обезвоживание. Больные с ожогом 30% поверхности тела теряют ежедневно около 4100 мл воды (Рудовский В., Назилов-

ский В., 1980).

О нарушении белкового обмена у обожженных больных хорошо известно. С обменом связывают развитие синдрома эндогенной интоксикации. И.И. Долгушин и соавт. (2000) выявили изменения в структуре клеточных мембран, приводящие к повышению проницаемости ее, что обуславливает выход ферментов из клеток ткани в кровяное русло.

Особо важную роль в регуляции иммунной реактивности и репаративных процессов играют нейтрофилы. В плазматической мембране нейтрофила находится комплекс ферментов, объединенных под единым названием НАДФН-оксидаза, при активации которой начинается образование и секретирование во внеклеточное пространство активных форм кислорода и включаются процессы ПОЛ.

На нарушение липидного статуса при ожоговой болезни указывают лишь немногие авторы (Николаева Л.Г.,1984; Курашвили Л.В., 1986; Карваяла Х.Ф., Паркса Д.Х., 1990), и их исследования касались обмена холестерина, триглицеридов, НЭЖК, общих липидов.

Немаловажное значение в течении ожоговой болезни отводится легким. Легкие, благодаря своему особому положению в общем кровотоке, напоминают своеобразное "сито", через которое фильтруется

"Липидный обмен при неотложных состояниях"

43

Л.В.Курашвили, В.Г.Васильков

вся циркулирующая кровь, и происходит избирательная инактивация ацетилхолина и брадикинина, значительно активнее, чем в печени, метаболизируются серотонин и простагландины, и токсические вещества.

В легких происходит процесс задержки кетоновых тел и их окисление. Кетонообразование в ткани легкого наблюдается большей частью при поступлении в него большого количества кетопластических веществ (жирных кислот) (Есипова И.К.,1979).

Нарушения метаболической функции легких при ожоговой болезни способствуют развитию токсикоза, поскольку скорость удаления из крови биологически активных веществ замедляется. Легкие играют важную роль в детоксикации организма при ферментативной токсемии. И.К.Есипова (1979), Г.В.Федосеев и соавт. (1980), Д.Н. Маянский (1991) установили, что в легких происходит фиксация протеолитических ферментов за счет действия легочных ингибиторов протеаз.

При недостаточности ингибиторов протеолитических ферментов активируются процессы перекисного окисления липидов, что разрушает сурфактант. При этом нарастает в мембранах альвеолоцитов количество лизолецитина и увеличивается поверхностное натяжение в них, следствием которого является появление ателектазов, внутриклеточного шунтирования крови (Федосеев Г.В., 1980; Маянский Д.Н., 1991;.Хачатурьян М.Л и соавт., 1996).

Л.Е.Панин (1983) выявил у полярников при длительном действии на организм низких температур значительное увеличение в крови триглицеридов и суммарной фракции ЛПНП и ЛПОНП. Несмотря на, казалось бы, разносторонний подход к изучению изменений обмена веществ при термических воздействиях на организм, нарушения обмена липидов остаются недостаточно изученными.

Эмоциональное перевозбуждение сопровождается гипертриглицеридемией и снижением количества холестерина во фракции липопротеидов высокой плотности (Хомуло П.С., 1992). Благодаря проведенным исследованиям установлено, что при эмоциональном стрессе отмечается увеличение лизофосфатидилхолина в крови и повышение активности тромбоцитов. Увеличение триглицеридов и повышение АД в сочетании являются фактором риска нарушения мозгового кровообращения (Лапшин Е.Н. и соавт., 1989).

При физической нагрузке, как показали Н.Н. Маянская и соавт. (1983), Ф.З. Меерсон (1988), изменялся спектр липопротеидов сыворотки крови: снижался суммарный уровень содержания ЛПНП + ЛПОНП и повышался уровень ЛПВП за счет потребления ЛПОНП активно сокращающейся мышечной тканью.

44 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

На липидный статус оказывает влияние употребление алкоголя. Так, прием алкоголя повышает содержание триглицеридов в крови, в сердечной мышце, печени, головном мозге (Божко Г.Х. и соавт. 1991).

Как считают Ю.П.Никитин и соавт. (1985), механизм гипертриглицеридемии при употреблении алкоголя и повышение ХЛ-ЛПВП связан с угнетением синтеза желчных кислот в печени из холестерина и повышенным формированием в ней ЛПОНП, которые в кровотоке интенсивно превращаются в ЛПНП.

Работами авторов P.N. Maton, A. Reuben (1982); Ф.Э. Вильшан-

ской и соавт. (1988), И.Ю. Винокуровой (1988) показано, что при хронической абдоминальной патологии (гепатиты, желчекаменная болезнь, хронические ангиохолиты описторхозной этиологии, лямблиозной и непаразитарной) в период обострения в крови достоверно повышались общие липиды за счет β- липопротеидов, холестерина и триглицеридов, а ЛПВП снижались. В период ремиссии отмечали снижение общих липидов.

Повышенное содержание триглицеридов, фосфолипидов и холестерина в крови авторы рассматривают как компенсаторную реакцию для предупреждения накопления триглицеридов в гепатоцитах. Н.В. Перова (1996) считает, что в этих случаях необходимо провести направленное лечение этих заболеваний и затем повторно провести диагностику нарушений липидного обмена.

Жировая инфильтрация печени обусловлена повышенным поступлением жирных кислот в печень или ресинтезом ТГ. При этом нарушается образование апо-В и снижается секреция ЛПОНП в кровоток. Токсические соединения, алкоголь, лекарственные препараты могут нарушить синтез апо-белков, в частности апо-В. В этих условиях накапливаются триглицериды, приводящие к жировой инфильтрации печени.

С.А.Логинов, Б.Н.Матюшин (1983) в своей работе указывают на то, что повышенное содержание триглицеридов в крови бывает при заболевании печени с цитолитическим и холестатическим синдромом, при острых и хронических процессах в печени. Рост уровня триглицеридов в крови отмечается в разгар цитолитической формы вирусного гепатита с холестатическим синдромом, при надпеченочном холестазе и жировом гепатозе, при этом ПОЛ снижается.

Ю.П.Никитин и соавт. (1985) сообщают о том, что при остром гепатите активность ЛХАТ коррелирует с содержанием белков, синтезируемых печенью и имеющих короткий период полувыведения. При хроническом гепатите активность ЛХАТ коррелирует с более длительно живущими белками. Авторы предполагают, что снижение

"Липидный обмен при неотложных состояниях"

45

Л.В.Курашвили, В.Г.Васильков

активности ЛХАТ отражает тяжесть поражения печеночной паренхимы.

При нарушении функции печени и снижении активности фермента ЛХАТ в эритроцитах увеличивается содержание свободного холестерина и меняется их форма. Однако уровень холестерина в крови не оказывает влияния на содержание холестерина в клетках (Климов А.Н. и соавт., 1994). А это очень важно для диагностики экстремальных состояний, когда только по морфологии эритроцитов, т.е. при появлении акантоцитоза, можно говорить о тяжелом поражении печени.

И.П.Терещенко, А.П.Кашулина (1993) указывают на то, что гиперхолестеринемия избирательно стимулирует функцию нейтрофилов, которые могут выделять в окружающую среду биологически активные вещества и стимулировать воспалительный процесс за счет активации комплекса НАДН-оксидаз и накопления активных форм кислорода.

Влитературе имеются указания на то, что состояние стресса, прием ряда лекарственных препаратов, острые инфекции сопровождаются нарушениями в обмене триглицеридов (Меерсон Ф.З., Пшен-

никова М.Г., 1988).

Впоследнее время обращают внимание на так называемую свободнорадикальную интоксикацию, которая может сопровождать ряд патологических состояний с обезвоживанием (гиповолемией) (Эседов Э.М., Мамаев С.Н., 1996; Музя Г.И. и соавт., 1996; Шнейвайтс В.Б. и соавт., 1994; Шикунова Л.Г. и соавт., 1999).

Свободные радикалы, представленные супероксидом кислорода, перекисью водорода и ОН радикалом, обладают сильным повреждающим действием на ткани. В обычных условиях они быстро разрушаются супероксиддисмутазой, пероксидазой и каталазой. Помимо этих ферментов организм имеет в своем распоряжении и другие субстанции, ингибирующие действие свободных радикалов, среди которых на первом месте стоит α -токоферол (витамин Е). Установлено, что антиоксидантный потенциал (токоферольные компоненты) связан

сконцентрацией ТГ в крови. Увеличение ТГ в крови снижает концентрацию α- токоферолов (Рябов С.И. и соавт.,1996).

При экстремальных состояниях вполне возможно парадоксальное сочетание низкого уровня перечисленных соединений крови с низким содержанием в ней α- токоферолов, что создает условия для появления интоксикации на почве супероксидов (Барабай В.А.1989; Мареева Т.Е. и соавт., 1990; Шнейвайс В.Б. и соавт., 1994).

46 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

Экстремальное состояние развивается при неблагоприятном течении сахарного диабета, нефротическом синдроме, приеме гормональных контрацептивов, лечениях глюкокортикоидами и сопровождается нарушением метаболизма липидов. П.Д. Горизонтов (1979), Ф.З. Меерсон, М.Г. Пшенникова, Б.А. Кузнецова (1984), Курашвили Л.В. и соавт. (1993) изучили показатели липидного обмена при более продолжительном стрессе. При хроническом стрессе в кровь усиленно секретируются глюкокортикоиды и при этом повышается содержание триглицеридов в сыворотке крови. По мнению авторов, наиболее вероятный механизм развития гипертриглицеридемии в этих условиях связан с повышением активности инсулина в крови и возрастанием уровня НЭЖК из-за ингибирования липопротеидлипазы и нарушения процессов трансформации ЛПОНП с образованием промежуточных продуктов. При этом замедляется катаболизм ЛПНП и накапливается фракция ЛПОНП.

В процессе адаптации организма к изменяющимся условиям внешней среды имеют значение насыщенные (стеариновая, пальмитиновая, олеиновая) и реже ненасыщенные (линолевая, линоленовая) жирные кислоты. В гепатоцитах человека содержатся системы десатурации и элонгации жирных кислот, которые позволяют из поступившей с пищей линолевой кислоты синтезировать линоленовую и арахидоновую. Жирные кислоты являются предпочтительными источниками образования макроэргов (Hylley S.et al, 1980; Герасимова Е.Н., 1980; Гурин В.Н., 1986).

Процессы перекисного окисления значительно активируются в условиях хронического стресса (Эседов Э.М., Мамаев С.Н.,1996; Галактионова Л.П. и соавт.1998). Интенсивность окисления липидов по перекисному пути зависит не только от функционального состояния субстрата. При голодании значительно повышается исходный уровень гидроперекисей липидов, что указывает на качественную перестройку дыхательной цепи в условиях стресса. В организме голодающих животных основной источник энергии - жирные кислоты, часть которых может окисляться по перекисному механизму с участием негемового железа, который связан с образованием дополнительного количества АТФ. Это единственное разумное объяснение тому, что при ингибировании цикла Кребса в связи с дефицитом оксалоацетата в печени при голодании скорость фосфорилирования практически постоянна.

А.В. Попов, А.Г. Виноградов (1982), Л.В. Курашвили(1986,1992), А.Н. Климов (1990), Н.С. Парфенова, Д.Б. Шестов (1995), Н.В. Перова и соавт. (1995) сообщают, что липопротеиды в процессе экстремаль-

"Липидный обмен при неотложных состояниях"

47

Л.В.Курашвили, В.Г.Васильков

ного воздействия на организм подвергаются разнообразным и значительным изменениям из-за многокомпонентности их состава.

Липопротеиды низкой плотности подвергаются в животном организме переоксидации, гликозилированию, ограниченному протеолизу, десиализации. Подобные изменения могут сделать частицы ЛПНП чужеродными, способными ингибировать NO-синтетазу в клетках эндотелия, тромбоцитах, а также ингибировать поглощение данными клетками L-аргинина-субстрата для синтеза оксида азота (NO).

NO является эндогенным фактором релаксации (EDRF). Образуется он из L- аргинина за счет окисления азота аминогруппы гуанидинового фрагмента под действием L-аргиин -NO-синтетазы. NO участвует во многих жизненно - важных физиологических процессах, так как является нейротротрансмиттером, цитотоксическим агентом, мощным фактором гемостаза (Пятакова Н.В. и соавт.,1999). Радикалы оксид азота рядом авторов рассматриваются как клеточный "супероксидант широкого спектра действия" (Реутов В.П., 1995), т.е. своего рода первое звено в системе защиты клеток от избытка АФК. При этом мощные ферментные системы антиоксидантной защиты выполняют дополнительную защитную роль в нейтрализации АФК (Калуев А.В., 1998).

NO-cупероксид анион является регулятором мозгового кровообращения: NO обеспечивает вазодилятацию, супероксид - вазоконст-

рикцию (Hanchock J., and Neill S.,1999). При ишемических поврежде-

ниях появление супероксид аниона кислорода будет приводить к нейтрализации действия NO в силу их взаимодействия, проводящего к образованию активного окислителя пероксинетрита. В этих условиях карнизин связывает супероксид анион и препятствует образованию пероксинитрита (Куклей М.Л., Ганушкина И.В.,1997).

Снижение уровня синтеза простациклина и окиси азота сопровождается повышением содержания тробоксана A-2 и может приводить к повышению тромбогенного потенциала, вазоконстрикции артериол, снижению объема кровотока и образованию тромбов. Появление в крови окисленных ЛПНП сопровождается накоплением антител к ним, формированию макромолекулярных комплексов, приводящих к усилению процессов нерецепторного захвата липопротеидов и способствовать развитию сосудистой патологии.

В настоящее время NO рассматривается как эндогенный вазодилятатор. Его сосудорасширяющие свойства связаны с активацией фермента гуанилатциклазы и накоплением циклической формы гуанилатмонофосфата (cGMF), который активирует соответствующие протеинкиназы и Са-АТФазу, помогает дефосфорилированию легких це-

48 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

пей миозина и выходу кальция из мышечных волокон и, в конечном итоге, обеспечивает вазодилятацию. Наряду с регуляторными свойствами оксид азота проявляет цитотоксическую и цитостатическую активность. Генерация этого агента иммунокомпетентными клетками обеспечивает защиту организма от бактериальных и злокачественных клеток (Murad F.,1994; Ignarro L. and Murad F.,1995).

Модифицированные ЛПНП могут образовывать комплексы с различными антителами, при этом нарушается их взаимодействие с ЛПНП - рецепторами клеток, они взаимодействуют со "Scauenger" рецепторами. Клетки моноцитарно-макрофагальной системы не могут гидролизовать эфиры холестерина, который накапливается в них. Они превращаются в пенистые клетки и запускают атеросклероз.

Гликозилированные липопротеиды высокой плотности значительно быстрее удаляются из кровотока, что ведет к развитию гиполипопротеидемии, которую проследить довольно-таки сложно (Лопухин Ю.М. и соавт., 1983; Панин Л.Е. и соавт., 1994).

Тертов В.В. и соавт.(1994) утверждают, что изменение структуры липопротеидов низкой плотности происходит из-за снижения в их составе сиаловых кислот. Модифицированные ЛПНП связываются на поверхности макрофагов рецепторами, которые не регулируются внутриклеточной концентрацией холестерина макрофагов и превращаются в пенистые клетки.

Исследованиями авторов Е.Ф. Давиденковой и соавт. (1980),

И.А. Щербаковой и соавт. (1991), Kuhn F. et al .1992), Н.В. Перовой и соавт. (1995) установлено, что при экстремальных состояниях измененные ЛПНП могут воздействовать на тромбоциты, эндотелиальные клетки, свертывающую систему, фибринолиз.

При гиперхолестеринемии тромбоциты обладают повышенной способностью к агрегации, выделяют АДФ, адреналин, серотонин, тромбоксан и способствуют сокращению сосудов в зоне повреждения эндотелия. При увеличении в крови триглицеридов повышается активность П и Х факторов свертывания крови, растет уровень фибриногена. Процессы фибринолиза угнетаются (Simson H, Mann G.,1983).

В работах В.В.Долгова (1985), Heller R.et al (1991) сообщается,

что гиперхолестеринемия ускоряет рост эндотелиальных клеток за счет освобождения из клеток крови низкомолекулярных факторов роста и способствует дисфункциональным нарушениям эндотелиоцитов, т.е. способствует развитию атеросклеротических процессов.

П.Н.Медведева и соавт. (1985) считают, что морфологические нарушения в структуре эндотелия сосудистой стенки зачастую не сопровождаются изменениями липидов крови, но приводят к изменению

"Липидный обмен при неотложных состояниях"

49

Л.В.Курашвили, В.Г.Васильков

активности лизосомальных ферментов гидролизирующих эфиры холестерина в них. Активность лизосомальной холестеролэстеразы зависит от соотношения холестерина и фосфолипидов клеточных мембран. Изменение соотношения холестерина в мембранах клеток, по мнению этих авторов, можно рассматривать как одно из проявлений атерогенного действия ХЛ в патогенезе атеросклероза (Brown M., Goldstein G., 1983; Медведева П.Н. и соавт., 1985).

Сосудистым эпителием поглощаются богатые триглицеридами липопротеиды, которые в дальнейшем превращаются в атерогенные пенистые клетки. Выявлено, что 40% модифицированных ЛПВП поглощаются гепатоцитами, а 50% - эндотелиальными клетками (Томпсон Г.Р., 1990). При гипертриглицеридемиях направленность изменений субфракционного спектра ЛПВП нарушена. Н.Н.Маянская и соавт.(1983) полагают, что ЛПВП-2 при гипертриглицеридемии не могут в полной мере взаимодействовать с клетками печени, поэтому превращение крупных частиц в мелкие протекает менее активно. Chang J. et al.(1985) считают, что при гипертриглицеридемии в частицах ЛПВП -2 повышается содержание триглицеридов и развивается их недогруженность эфирами холестерина.

Мощные окислительные системы эндотелия и макрофагов могут модифицировать частицы ЛПНП, приносящие холестерин к клеткам, и ЛПВП-3, осуществляющие обратный транспорт холестерина, чем будут способствовать нарушению липидного обмена (Brown M.S., Goldstein G., 1983; Душкин М.П., Иванова М.В.,1993).

В последнее время существуют такая точка зрения (Курашвили Л.В.1992), согласно которой гипертриглицеридемия в большей степени способствует развитию ИБС, нежели гиперхолестеринемия, ибо вся система транспорта липопротеидов направлена на доставку энергетического материала, которого клетка не имеет. Атеросклероз представляет собой специфическое деструктивное поражение клеток соединительной ткани, компенсаторно вовлеченных в кругооборот холестерина в транспорте триглицеридов (Титов В.Н., 1996; В.Н. Титов, 2003).

Данные литературы по изучению липидного обмена у больных с дегидратацией, ожоговых больных недостаточны и в определенной степени противоречивы. Литература, касающаяся липидного обмена при ИБС, очень разнообразна и также противоречива. Расходятся мнения исследователей по отношению предсказательной ценности риска развития ИБС по холестерину, триглицеридам, апо-белкам. В этой ситуации остается единственное: всю накопленную информацию пересмотреть с иной точки зрения (Титов В.Н., 1996).

50 "Липидный обмен при неотложных состояниях"

Соседние файлы в папке Медицина катастроф