Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Медицина катастроф / Курашвили_Л_В_,_Васильков_В_Г_Липидный_обмен_при_неотложных_состояниях

.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
1.63 Mб
Скачать

Л.В.Курашвили, В.Г.Васильков

ся к гидроксильной группе свободного холестерина клеточной мембраны. При этом образуются эфиры холестерина и лизолецитин. Преобладающая масса холестерина из клеток в кровь переносится через водную фазу. Затем эфиры холестерина, апо-Е перекачиваются из ремнант хиломикронов в ЛПОНП. После обмена ремнанты, обогащенные эфирами холестерина, свободным холестерином, апо-Е- белком, быстро поглощаются печенью. Отсюда, эстерификация холестерина - это часть механизма удаления избытка поверхностных липидов из ремнант хиломикронов и ЛПОНП.

Часть образовавшихся ЛПВП-3 непосредственно переносят холестерин в клетки печени (Eisenberg S., et al, 1975; Анестиади В.Х., Нагорнев В.А., 1984). На поверхности мембран клеток содержится особый тип белков - рецепторы, которые связывают переносимое вещество на наружной поверхности клетки и проводят его через мембрану, а на внутренней поверхности освобождают переносимое вещество (Никитин Ю.П., и соавт., 1985; Тертов В.В. и соавт., 1994). Рецепторный перенос холестерина ЛПВП определяется входящими в их состав апо-белками. Рецепторы клеточной мембраны, обеспечивающие обмен и превращение липидов, представлены В, Е-рецепторами, Е-рецепторами, А-I-рецепторами, А-П-рецепторами. Количество рецепторов на клеточной мембране непостоянно и колеблется от 15000 до 70000. Из всех типов рецепторов наиболее активными являются В, Е-рецепторы. В, Е- рецепторы с высокой специфичностью связывают липопротеиды, в состав которых входят апо-В-100, но в 100 раз активнее они связывают липопротеиды, содержащие апо-Е-белок, т.к. апо-Е обладает большим сродством к рецепторам двух типов: рецепторам-В, Е и рецепторам-Е. В, Е-рецепторы синтезируются во многих соматических клетках, но 70 % всех В, Е-рецепторов находятся в печени. За счет этих рецепторов осуществляется удаление из кровотока 50-70 % ЛПНП (Alpers D.M. et al, 1985). В крови апо-Е преимущественно циркулируют между ЛПВП, ЛПОНП и ХМ и являются главным образом апо-белками, замыкающими цикл холестерина. Л.Е.Панин (1978),

В.С.Репин (1987), В.Н.Титов, Н.Г. Творогова (1992), А.Lusis (1988)

считают, что источником формирования белоклипидных рекомбинантов в крови служат свободные апо-белки и липиды плазматических мембран клеток.

Обратный транспорт холестерина в кровотоке связан с направленной доставкой частиц ЛПВП-2, обогащенных холестерином, в клетки печени и тонкого кишечника для последующего окисления холестерина (Гасилин В.С., Курданов Х.А., 1981; Дея К., Деккер М., 1981; Шейфер Э.Дж., и соавт., 1983; Леви Р.П., 1987).

"Липидный обмен при неотложных состояниях"

21

Л.В.Курашвили, В.Г.Васильков

Холестерин в печень и тонкий кишечник доставляется двумя путями:

а) рецепторным эндоцитозом целых частиц с их последующей деградацией в лизосомах;

б) асимметричным захватом холестерина из ЛПВП с помощью трансфертных факторов эндоцитоза белка.

Рецепторный эндоцитоз ЛПВП в печени осуществляется через три типа рецепторов: В, Е-рецепторы, Е-рецепторы, ЛПВП - рецепторы (Панин Л.Е. и соавт. 1994). При повышении концентрации холестерина количество В, Е-рецепторов уменьшается, а ЛПВП - рецепторов увеличивается. Количество Е-рецепторов не зависит от содержания холестерина в клетках (Климов А.Н., 1981; Томсон Г.Р., 1990). При повышении содержания в клетках печени ЛПВП-2 в гепатоцитах стимулируется образование желчных кислот, снижается синтез и секреция ЛПОНП, т.е. метаболизм ЛПВП-2 связан с обменом триглицеридов и интенсивностью катаболизма ЛПОНП и ХМ (Титов В.Н.,

Чернядьева И.Ф., 1987). В работе G.Assman, L.H.Schmitz, H.Menzel (1983) сообщается, что в поддержании оптимального уровня связывания и интернализации ЛПВП гепатоцитами определенную роль выполняют глюкокортикоиды. Их стимулирующая роль на экспрессию ЛПВП-рецепторов оказывается независимой от изменения содержания холестерина в паренхиматозных клетках печени.

В печени в липидном обмене, кроме гепатоцитов, участвуют клетки Купфера, эндотелиоциты, жиронакапливающие клетки, т.к. в последнее время обнаружены на клеточной мембране этих клеток апо- В, Е-рецепторы и специфические апо-А-1 рецепторы (Панин Л.Е., и соавт. 1994). Это значит, что гепатоциты и клетки Купфера активно принимают участие в обмене ЛПОНП, ЛПНП, ЛПВП. По сравнению с гепатоцитами макрофаги и эндотелиоциты наиболее активно поглощают ЛПВП. Кроме того, на паренхиматозных клетках обнаружены "Scavenger"-рецепторы, которые принимают участие в катаболизме модифицированных липопротеидов (Breslow J., 1985; Курашвили Л.В., 1986). Поглощение апо-В-100 липопротеидов макрофагами является многостадийным процессом. Для взаимодействия со "Scavenger"- рецепторами молекула апо-В-100 должна быть подвергнута денатурации. Этот процесс осуществляется макрофагами за счет усиления процессов сиалирования, гликозилирования, перекисного окисления апо- В-100 (В.Н.Титов, 1996). При этом клетки моноцитарно - макрофагальной системы не могут гидролизовать эфиры холестерина, который в них накапливается, и превращаются в пенистые клетки.

22 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

Ремнанты хиломикронов, обогащенные апо-Е-белками, эфирами холестерина, утилизируются печенью через апо-Е-рецепторы гепатоцитов (G.Tabas, A.R. Tall, 1985). Апо-Е-белок является, главным образом, белком частиц, содержащих избыток триглицеридов и эфиров холестерина (ЛПОНП, ЛПНП, а также некоторых фракций ЛПВП). Основная функция апо-Е связана с переносом холестерина, эфиров холестерина и триглицеридов, а также с направленным транспортом апо-Е-содержащих ремнантов в печень (Assman G.,et al, 1983; Eisenberg S., 1984; Перова Н.В. и соавт., 1995). Белок апо-Е принимает участие в обратном транспорте холестерина на уровне сосудистой стенки - обмен холестерином и апо-белками между циркулирующими

вкрови липопротеидами и разными дифференцированными клетками (Тороховская Т.И., Халилов Э.М., 1988). Авторы предполагают, что апо-Е-белок является основным в системе откачки холестерина из нервных клеток.

Вмозге существует автономная система направленного транспорта холестерина в целях поддержания липидного гомеостаза. С полиморфизмом апо-Е связывает возникновение гиперлипопротеидемии. Апо-Е - содержащие ЛПВП могут снабжать клетки холестерином подобно частицам ЛПНП. Это наиболее выражено в клетках надпочечников, почек, эпителия тонкого кишечника, адипоцитах (Творогова М.Г., Титов В.Н., 1993). Макрофаги - санитары сосудистой стенки. Моноциты попадают в интиму из кровотока и, вновь возвращаясь в кровоток, обеспечивают дренаж холестерина из интимы артерии (Долгов В.В., 1985; Чиркин А.А., Коневалова Н.Ю., 1987; Маянский Д.Н., 1991). В макрофагах существуют три независимые системы выведения холестерина из клеток: ретроэндоцитоз ЛПВП, экскреция холестерина

вмультиламелярных мембранах, синтез апо-Е-богатых липопротеидов

(Репин В.С.,1987,1990; Леви Р.П.,1987; Шахов Ю.А., и соавт. 1989).

Вотличие от других дифференцированных клеток макрофаги произвольно захватывают липопротеиды, обломки клеток, модифицированные липопротеиды, выполняя при этом функцию клеток - му-

сорщиков (Душкин М.П, Иванова М.В., 1993; Brown M.S., et al., 1983).

Для эвакуации холестерина из лизосом макрофаги захватывают ЛПВП-3 рецепторным эндоцитозом, доставляют их к лизосомам. А затем с помощью фермента ЛХАТ эти частицы обогащаются эфирами холестерина и уже в виде ЛПВП-2 транспортируются в обратном направлении к плазматическим мембранам и секретируются в кровь эк-

зоцитозом (Панин Л.Е., 1990; Deeb S.S., et al, 1986). И, наконец, третий путь оттока холестерина из макрофагов связан с синтезом апо-Е - содержащих липопротеидов (Miller N.E.,et al, 1984). Жировая ткань яв-

"Липидный обмен при неотложных состояниях"

23

Л.В.Курашвили, В.Г.Васильков

ляется по отношению к триглицеридам и холестерину мощным буфером. Состоит она из адипоцитов, на мембранах которых содержатся ЛПВП-рецепторы. За счет ЛПВП-частиц осуществляется доставка избытка триглицеридов и холестерина в адипоциты. Богатые апо-Е- белками частицы ЛПВП могут доставлять холестерин к жировым тканям, как ЛПНП. Отсюда, ЛПВП являются главными медиаторами не только оттока, но и накопления холестерина в адипоцитах (Репин В.С., 1987; Кухаренко С.С., Невокшанов О.В., 1991).

Исследованиями последних лет (Бочков В.Н., и соавт.1994 и др.) установлено, что ЛПНП и ЛПВП обладают не только транспортом липидов, но и стимулируют секреторную активность и агрегацию тромбоцитов.

Липиды клеточных мембран

Клеточная мембрана является многокомпонентной системой, в которой структурная организация и функция тесно взаимосвязаны, а их изменения служат триггерным механизмом перехода клетки из одного метаболического состояния в другое. Важным структурным компонентом биомембран является холестерин. В клеточных и субклеточных мембранах холестерин распределен неравномерно. Более 90 % холестерина клетки содержится в плазматической мембране, в мембранах митохондрий холестерина нет. Содержание холестерина в наружном монослое клеточной мембраны гораздо выше, чем во внутреннем, т.е. холестерин преимущественно сосредоточен на границе с внешней средой. В клеточной мембране холестерин располагается вместе с фосфолипидами и отвечает за пространственную упаковку молекул фосфолипидов. Холестерин вынуждает остатки жирных кислот располагаться более плотно в пространстве и уменьшает их подвижность, снижает жидкостность и повышает микровязкость клеточных мембран (Бурлакова Е.Б., 1981; Антонов В.Ф., 1982; Соболева М.К., Шарапов В.И., 1993; Бергельсон Л.Д., 1996; Титов В.Н., 2000).

В эпителии эндокринных желез (надпочечники, яичники и семенники) и гепатоцитах холестерин необходим еще и для синтеза стероидных гормонов и желчных кислот. Эти клетки активно поглощают холестерин в виде эфиров холестерина.

Молекула холестерина уменьшает содержание воды в клеточной мембране, определяет проницаемость ее, создает микроокружение для встроенных в мембрану ферментов (Репин В.С., 1990; Атаджанов М.А.и соавт., 1995).

24 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

Структурная функция холестерина является наиболее ранней. Вторая функция холестерина связана с краткосрочной клеточной адаптацией, поддержанием постоянства внутренней среды путем изменения структуры и физико-химических свойств клеточных мембран.

Вторым важным структурным компонентом биомембран являются фосфолипиды, активно участвующие в формировании липидного бислоя, структурно-функциональная активность которого зависит от уровня фосфолипидов в нем (Панасенко О.М., Сергиенко В.И., 1993; Бергельсон Л.Д., 1996).

Состав фосфолипидов цитоплазматических мембран органов и тканей отличается большим разнообразием. В них входят фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин, полиглицерофосфатиды, лизофосфатидилхолин (Овчинников Ю.А., 1987).

Из перечисленных моноглицерофосфатидов на фосфатидилхолин приходится 20-22 %, он является компонентом антиоксидантной системы (Мареева Т.Е., и соавт., 1990).

Соотношение остальных моноглицерофосфатидов во всех органах и тканях различно и зависит от функциональных особенностей каждого органа. В ткани легкого фосфатидилхолин образует основу сурфактанта. В ответ на стимуляцию внешних раздражителей гидролизуется фосфатидилхолин при участии фосфолипазы Д и образуется фосфатидная кислота, которая является вторичным мессенжером в регуляции активности протеинкиназ, G-белков, фосфатидилинозитолкиназ, аденилатциклаз и других сигнальных молекул (Spiegel S. et al., 1996 ).

Основная функция фосфатидилхолина и близкого к нему по структуре холинплазмологена связана с активностью фосфолипазы-А- 2, при гидролизе которых образуется лизоформа фактора активации тромбоцитов (лизо-фат). Лизо-фат является высоко активным клеточным медиатором, регулирующим важные процессы в норме и при патологических состояниях, в которые вовлекаются тромбоциты, нейтрофилы, базофилы, лимфоциты, моноциты, клетки эндотелия, гепатоциты, пневмоциты, нервные клетки (Стукан И.В., Горелюк И.П., 1990; Зубарева Е.В., Сеферова Р.И., 1992; Терещенко И.П., Кашулина А.П., 1993; Музя Г.И. и соавт., 1994; Музя Г.И. и соавт., 1996; Проказова Л.В.и соавт., 1998).

Образующийся при гидролизе фосфолипидов диглицерин (глицерофосфат) является активатором фермента протеинкиназы, участвующей в клеточной проницаемости (Панасенко О.М.., Сергиенко В.И.1993; Кучкина Н.В.и соавт..1994; Куликов В.И., Музя Г.И., 1996).

"Липидный обмен при неотложных состояниях"

25

Л.В.Курашвили, В.Г.Васильков

Гидролиз полиглицерофосфатидов сопровождается высвобождением кардиолипина, участвующего в активации ферментов переноса электронов в дыхательной цепи (Krebs I.I., et al., 1979). По современным представлениям, передача регуляторного сигнала от плазмолеммы на генетический аппарат осуществляется через ряд сигнальных систем: аденилатциклазную, МАР-киназную, фосфатидокислотную, фосфаинозитидную, липоксигеназную, супероксдсинтазную, NO - синтазную, а также через рецепторы, обладающие гистидин-киназной активностью (Ладыженская Э.П., Проценко М.А., 2002).

Гидролиз фосфатидилинозита стимулирует проникновение кальция внутрь клеток и тоже активирует Са-зависимую протеинкиназу (Бабич Л.Г. и соавт., 1994).

Моноглицерофосфатиды, входящие в состав мембран клеток и субклеточных органелл, содержат в В-положении жирные полиненасыщенные кислоты, которые под действием физических, химических факторов внешней среды (выхлопные газы, питьевая вода, пестициды, гербициды, лекарственные препараты) подвергаются перекисному окислению (Панасенко О.М. и соавт., 1995).

Перекисное окисление липидов

Перекисное окисление липидов, "цепное окисление", или свободнорадикальное окисление, представляет собой цепные реакции, которые слабо выражены у здорового человека. Первые работы в России по цепным реакциям связаны с изучением метаболизма арахидоновой кислоты в биологических системах русским ученым Б.Н.Тарусовым в 60-е годы двадцатого столетия (Курашвили Л.В. и

соавт., 2003).

Активация перекисного окисления липидов является физиологической реакцией, принимающей участие в механизмах неспецифической адаптации организма, и представляет собой неферментативные реакции прямого связывания кислорода с субстратом фосфолипидов, в первую очередь с полиеновыми кислотами, входящими в состав клеточных мембран.

Перекисное окисление липидов играет важную роль при развитии воспалительного процесса (Барабай В.А., 1989; Захарова Н.Б., Титова Г.П., 1992; Ершова Л.П., Кубаренко Г.Н., 1992; Долгушин И.И. и

соавт. 2000).

Окислительный стресс является одним из универсальных механизмов повреждения клеточных мембран, сопровождающий многие заболевания и проявляющийся накоплением активных кислородсо-

26 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

держащих радикалов (О-2, НО2, RO2, НО и RO) или активных форм кислорода (АФК) (Пескин А.В., 1998; Кондрашова М.Н., 1999).

Патофизиологический аспект действия активных форм кислорода связан с активацией реакций свободнорадикального окисления, ведущих к повреждению клетки. Перекисное окисление липидов рассматривают как универсальный механизм повреждения клетки при воспалении, ишемии, аутоиммунных болезнях, токсическом действии кислорода, экологических факторов и «канцерогенов» (Логинов А.С., Матюшин Б.Н., 1991; Меньшикова Е.Б., Зенков Н.К., 1993; Скулачев В.П., 1998).

АФК опасны для клетки. Например, радикал гидроксила (ОН) способен быстро и необратимо окислять практически любое из веществ биологического происхождения, выводя тем самым это вещество из строя.

Клетка обладает мощной системой защиты от АФК, которая способна предотвращать образование АФК или обезвреживать их при избыточном накоплении в клетке. Повышаться уровень АФК может при различных патологических состояниях. В раскрытии интегральных механизмов ПОЛ и повреждении мембранных систем сыграли роль отечественные ученые Е.Б.Бурлакова (1981), Д.М.Антонов

(1982), В.П.Скулачев (1998).

Механизм свободнорадикального окисления подчиняется общим законам цепного окисления. Начинается процесс чаще всего с высво-

бождения О.Н - радикала, способного отнимать атом Н+ у органических соединений с образованием перекиси водорода и свободного ор-

ганического радикала (R.), т.е. радикала полиеновых жирных кислот, который взаимодействует с кислородом, образуя перекисные радикалы. Чередование двух последних реакций приводит к цепному перекисному окислению липидов.

Изменение состава жирных кислот в липидном бислое клеточных мембран может изменить агрегацию, диффузное перемещение сквозь клеточную мембрану, активность мембраносвязанных ферментов, экспрессию рецепторов, мембранную проницаемость и транс-

портные свойства (Serhan C.N., Haeg-gstrom J.Z., Leslie C.C., 1996; Fritsche K., Cassity N., 1996).

Первичный биохимический цикл окисления арахидоновой кислоты

Арахидоновая кислота, входящая в состав фосфолипидов клеточных мембран, является исходным субстратом в биосинтезе проста-

"Липидный обмен при неотложных состояниях"

27

Л.В.Курашвили, В.Г.Васильков

ноидов - физиологически активных веществ, принимающих активное участие в регуляции многих функций организма (Когтева Г.С., Безуг-

лов В.В., 1998).

Концентрация свободной арахидоновой кислоты в клетках находится под строгим контролем. Арахидоновая кислота содержится главным образом в эндогенных депо мембранных фосфолипидов. Источником арахидоновой кислоты могут быть плазменные ЛПНП

(Salbach,P.B., et al., 1992).

Уровень свободной арахидоновой кислоты невелик и является одним из наиболее важных факторов регуляции физиологических и патологических процессов, а также обеспечения функционирования системы гемостаза.

Метаболизм арахидоновой кислоты обеспечивает биоэффекторные функции на уровне клеток и во всем организме в целом (Проказо-

ва Н.В., и соавт., 1998; Когтева Г.С., Безуглов В.В., 1998; Serhan, C.N., et al., 1996).

Ферментативное окисление арахидоновой кислоты в простаноиды осуществляется под действием двух последовательно работающих ферментов и проходит через образование промежуточного простагландина PgH2. При участии фермента циклооксигеназы образуются простаноиды, куда входят простагландины, простациклины и тромбоксаны.

К первичным продуктам перекисного окисления липидов относятся циклические эндоперекиси и алифатические моно- и гидроперекиси. К вторичнымненасыщенныеальдегиды(малоновый диальдегид).

Первый биохимический цикл окисления арахидоновой кислоты тромбоцитов и эндотелия сосудистой стенки направлен на образование тромбоксанов и простациклинов через циклические эндоперекиси.

Простациклин, он же простагландин (PgH2), cинтезируется неизмененной сосудистой стенкой в малых количествах. В тромбоцитарных агрегатах постоянно образуются эндоперекиси, которые быстро превращаются в простациклин клетками эндотелия сосудистой cтенки при участии фермента циклооксигеназы. Синтезируя простациклин, неизмененная сосудистая стенка активно препятствует формированию тромбоцитарного агрегата на своей поверхности. Превращения эндоперекисей связаны с местом их локализации (Петрухина Г.Н., Макаров В.А., 1998).

В местах повреждения на эндоперекиси действует фермент тромбоксансинтетаза, и они превращаются в тромбоксан А2. Тромбоксан А2 является мощным вазоконстриктором, агрегирующим тромбо-

28 "Липидный обмен при неотложных состояниях"

Л.В.Курашвили, В.Г.Васильков

циты агентом, а также обеспечивает почти немедленное высвобождение гранул тромбоцитов.

Вторичный биохимический цикл окисления арахидоновой кислоты

Ключевым ферментом этого цикла является липоксигеназа. В результате этого цикла образуются промежуточные продукты, так называемые алифатические эндоперекиси, из которых синтезируются лейкотриены и липоксины (Кучкин Н.В. и соавт., 1994).

Лейкотриены - это высокоактивные липидные биоэффекторы. По структуре и биологической активности они подразделяются на два класса. К первому классу относятся цистеинил лейкотриены. Они представлены лейкотриенами С-4 (LTC-4), Д-4 (LTD-4) и лейкотриеном Е-4 (LTE-4). Второй класс представлен лейкотриеном В-4 (LTB-4), который считается главным метаболитом арахидоновой кислоты. Оба класса лейкотриенов образуются в лейкоцитах при окислительном катаболизме арахидоновой кислоты при участии фермента 5 - липоксигеназы и вовлечены в регуляцию воспалительного процесса (Сала А.

и соавт., 1998).

Лейкотриены открыты в 1979 г. P.Borjeа и В.Samuelsso, они обладают противовоспалительным действием, ответственны за хемотаксис и хемокинезис нейтрофилов, высвобождение лизосомальных ферментов и продуцирование антиоксидантов, принимают участие в механизмах развития многих заболеваний, особенно аллергических при участии IGE, белков системы компонентов комплемента, ионов кальция и нейтрофильной стимуляции.

Лейкотриены немедленно высвобождаются в окружающую среду и взаимодействуют с рецепторами клеток. Лейкотриены подразделяются на цистеиновые с гистаминоподобным действием и лейкотриены, взаимодействующие с иммунокомпетентными клетками (Т - хелперами и Т-супрессорами), регулирующие выработку интерферонов и ИЛ-1, ИЛ-2.

Депонировать эйкозаноиды клетки не могут. Это делает необходимым активный постоянный транспорт в клетки предшественников их синтеза.

Действие эйкозаноидов реализуется в микроокружении тех клеток, которые их синтезировали. Эйкозаноиды регулируют сосудистый тонус через ЕDRF (окись азота), влияя на состояние микроциркуляции, сокращение и расслабление гладких мышц, хемотаксис, миграцию нейтрофилов, процесс свертывания крови, нервную проводи-

"Липидный обмен при неотложных состояниях"

29

Л.В.Курашвили, В.Г.Васильков

мость, стимулируют или подавляют освобождение гормонов, т.е. участвуют во многих физиологических функциях организма и во многих патофизиологических реакциях организма.

Липопероксиды нестойки и подвергаются дальнейшей деструкции в процессе перекисного окисления липидов, при этом накапливаются малоновый диальдегид и продукт его взаимодействия с аминосодержащими соединениями, так называемые флюоресцирующие шиффовы основания (шлаки), и компоненты полимеризации окисленных липидов - возрастные пигменты и липофусцины.

Малоновый диальдегид, гидроперекиси являются мутагенами и обладают выраженной цитотоксичностью, подавляют гликолиз и окислительное фосфорилирование, игибируют синтез белка, нуклеиновых кислот, нарушают секрецию триглицеридов гепатоцитами, вызывают конверсию микросомального цитохрома Р45О в нативную форму Р42О, ингибируют различные мембранные ферменты (2,6-фосфотазу в микросомах, аденилатциклазу и 5-нуклеотидазу в плазматических мембранах).

Простагландины, тромбоксаны, простациклины являются медиаторами биохимических процессов, а лейкотриены и липоксины - физиологическими эйкозоноидами. Все активные метаболиты арахидоновой кислоты и других полиеновых кислот, участвующих в физиологических и патологических процессах организма, называют оксилипинами (Климов А.Н., Никульчева Н.Г., 1984; Бурлакова Е.Б., 1981; Никитин Ю.П. и соавт., 1985; Сала А. и соавт., 1998).

Эйкозаноиды подразделяются на три группы: эйкозаноиды первой группы синтезированы из y-6-линолевой кислоты, второй группы из арахидоновой кислоты и третьей группы из 3-α - линоленовой кислоты, имеющих в своей структуре различное количество двойных связей, что определяет различия в их функциональной активности.

Клетки рыхлой соединительной ткани синтезируют разные эйкозаноиды. Так, тромбоциты синтезируют тромбоксаны, эндотелиальные клетки синтезируют простациклины. Тромбоксаны активируют адгезию (прилипание) тромбоцитов и тромбообразование, а простациклины, наоборот, ингибируют агрегацию тромбоцитов на сосудистой стенке.

Тромбоксаны и простациклины выступают как функциональные антагонисты. Простациклин третьей группы оказывает наибольшее антиагрегационное действие, а тромбоксан третьей группы слабо стимулирует агрегацию тромбоцитов. В тандеме (группе) проста- циклин-2/тромбоксан-2 их действие сбалансировано. В тандеме про-

30 "Липидный обмен при неотложных состояниях"

Соседние файлы в папке Медицина катастроф