Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Гистология / КОЛИЧЕСТВЕННАЯ_ОЦЕНКА_ИЗМЕНЕНИЙ_В_МИКРОСТРУКТУРЕ_ПЕРИНЕЙРОНАЛЬНЫХ

.pdf
Скачиваний:
0
Добавлен:
23.03.2024
Размер:
5.42 Mб
Скачать

115. Mikami, T. Contactin–1 is a functional receptor for neuroregulatory chondroitin sulfate–E // T. Mikami, D. Yasunaga, H. Kitagawa // J. Biol. Chem. – 2009. – V. 284, I. 7. – P. 4494–4499. doi: 10.1074/jbc.M809227200

116.Shen, Y. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration // Y. Shen, A.P. Tenney, S.A. Busch, K.P. Horn, F.X. Cuascut, K. Liu, Z. He, J. Silver, J.G. Flanagan // Science – 2009. – V. 326, I. 5952. – P. 592–596. doi: 10.1126/science.1178310

117.Fry, E.J. Corticospinal tract regeneration after spinal cord PNNs in Controlling CNS Plasticity After injury in receptor protein tyrosine phosphatase sigma deficient mice // E.J. Fry, M.J. Chagnon, R. López–Vales, M.L. Tremblay, S. David // Glia – 2010. – V. 58, I. 4. – P. 423–433. doi: 10.1002/glia.20934

118.Coles, C.H. Proteoglycan–specific molecular switch for RPTPr clustering and neuronal extension // C.H. Coles, Y. Shen, A.P. Tenney, C. Siebold, G.C. Sutton, W. Lu, J.T. Gallagher, E.Y. Jones, J.G. Flanagan, A.R. Aricescu // Science – 2011. – V. 332, I. 6028. – P. 484–488. doi: 10.1126/science.1200840

119.Afshari, F.T. Schwann cell migration is integrin–dependent and inhibited by astrocyte–produced aggrecan // F.T. Afshari, J.C. Kwok, L. White, J.W. Fawcett // Glia – 2010. – V. 58, I. 7. – P. 857–869. doi: 10.1002/glia.20970

120.Condic, M.L. Embryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing integrin expression // M.L. Condic, D.M. Snow, P.C. Letourneau // J. Neurosci. – 1999. – V. 19, I. 22. – P. 10036–10043. doi: 10.1523/JNEUROSCI.19–22–10036.1999

121.Tan, C.L. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling // C.L. Tan, J.C.F. Kwok, R. Patani, C. Ffrench–Constant, S. Chandran, J.W. Fawcett // J. Neurosci. – 2011. – V. 31, I. 17. – P. 6289–6295. doi: 10.1523/JNEUROSCI.0008–11.2011

122.De Wit, J. Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular

121

https://t.me/medicina_free

matrix // J. De Wit, F. De Winter, J. Klooster, J. Verhaagen // Mol. Cell. Neurosci.

2005. – V. 29, I. 1. – P. 40–55. doi: 10.1016/j.mcn.2004.12.009

123.Kantor, D.B. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparin and chondroitin sulfate proteoglycans // D.B. Kantor, O. Chivatakarn, K.L. Peer, S.F. Oster, M. Inatani, M.J. Hansen, J.G. Flanagan, Yu Yamaguchi, D.W. Sretavan, R.J. Giger, A.L. Kolodkin // Neuron – 2004. – V. 44, I. 6. – P. 961–975. doi: 10.1016/j.neuron.2004.12.002

124.Свищев Г.М. Конфокальная микроскопия и ультрамикроскопия живой клетки. – М.: ФИЗМАТЛИТ, 2011. – 120 с.

125.Vonwiller, P., Vanotti, A. Handbuch der biologischen Arbeitsmethoden // 1932. Abt. 5, T. 2. – P. 1529.

126.Мухитов А., Архипова С. Методы световой микроскопии для биологических и медицинских исследований. Под редакцией член–корр. РАН Никольского Е.Е.Методическое пособие, 2010 г. – 134 с.

127.Брумберг Е.М., Гершгорин А.С., Опак–иллюминатор,

преимущественно для люминесцентного микроскопа // А. с. на изобретение

No 78637. 1948.

128. Стрыгин А.В. Флуоресценция в биомедицинских исследованиях:

учебное пособие / сост.: А.В. Стрыгин, А.М. Доценко, Е.И. Морковин [и др.];

под общ. ред. А.В. Стрыгина. – Волгоград: Изд–во ВолгГМУ, 2020. – 160 с.

129. Брумберг Е.М. // Журнал общей биологии. 1955. Т. 16. No 3. С.

222.

130.Minsky M. // US Microscopy Apparatus, Patent 3517980 Dec.19, 1961. (Failed Nov.7.1957)

131.Naora H. // Science. – 1950. – V. 114. – P. 279.

132.Petran M., Hadravsky M. Method and arrangement for improving the resolving power and contrast. US Patent 3517980. 30.6.1970 (Failed 5.12.1966).

133.Egger M.D., Petran M. // Science. – 1967. – V. 157. – P. 305.

122

https://t.me/medicina_free

134. Свищев Г.М. Микроскоп / Описание изобретения к авт. свид. No

224842 (заявлено 14.03.1967), Изобретения, промышл. образцы, тов. знаки,

1968, No 26.

135. Свищев Г.М., Цитология // 1969. – Т. 11, No 7. – С. 903

136.Davidovits P., Egger M.D. // Nature. – 1969. – V. 223. – P. 831.

137.Davidovits P., Egger M.D. // Applied Optics. – 1971. – V. 10, No. 7. –

P. 1615

138.Cox placeI. J. // J. Microsc. 1984. – V. 133. Pt. 2. – P. 149

139.Koppel D.E., Axelrod D., Schlessinger J., Elson E.L., Webb W.W. // Biophys. J. – 1976. – V. 16. – P. 1315.

140.Sheppard C.J.R., Choudhury A., Optica Acta. // 1977. – V. 24. No. 10,

P. 1051

141.Patel D.V., McGhee C.N.J., Clinical Experimental Ophthalmology // 2007. – V. 35. – P. 71.

142A. Arnst, N. Spatial patterns and cell surface clusters in perineuronal nets // N. Arnst, S. Kuznetsova, N. Lipachev, N. Shaikhutdinov, A. Melnikova, M. Mavlikeev, P. Uvarov, T.V. Baltina, H. Rauvala, Y.N. Osin, A.P. Kiyasov, M. Paveliev // Brain Res. – 2016. – V. 1648 (Pt. A) – P. 214–223. doi: 10.1016/j.brainres.2016.07.020

143.Schindelin, J. FIJI: An open–source platform for biological–image analysis // J. Schindelin, I. Arganda–Carreras, E. Frise, V. Kaynig, M.Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona // Nat. Methods –

2012. – V. 9. – P. 676–682. doi: 10.1038/nmeth.2019

144. Welch, W.J. Construction of permutation tests. J. Am. Stat. Assoc. – 1990. – V. 85, I. 411. – P. 693–698. doi: 10.1080/01621459.1990.10474929

145А. Lipachev, N. Quantitative changes in perineuronal nets in development and posttraumatic condition // N. Lipachev, N. Arnst, A. Melnikova, H. Jäälinoja, A. Kochneva, A. Zhigalov, N. Kulesskaya, A.V. Aganov, M.

123

https://t.me/medicina_free

Mavlikeev, H. Rauvala, A.P. Kiyasov, M. Paveliev // J. Mol. Histol. – 2019. – V.

50, I. 3. – P. 203–216. doi: 10.1007/s10735–019–09818–y

146.Foscarin, S. Experience–dependent plasticity and modulation of growth regulatory molecules at central synapses // S. Foscarin, D. Ponchione, E. Pajaj, K. Leto, M. Gawlak, G.M. Wilczynski, F. Rossi, D. Carulli // PLoS One – 2011. – V. 6, I. 1. – e16666. doi: 10.1371/journal.pone.0016666

147.Slaker, M.L. A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity // M.L. Slaker, J.H. Harkness, B.A. Sorg // IBRO Rep. – 2016. – V. 1. – P. 54-60. doi:

10.1016/j.ibror.2016.10.001

148.Slaker, M.L. Cocaine Exposure Modulates Perineuronal Nets and Synaptic Excitability of Fast–Spiking Interneurons in the Medial Prefrontal Cortex

//M.L. Slaker, E.T. Jorgensen, D.M. Hegarty, X. Liu, Y. Kong, F. Zhang, R.J. Linhardt, T.E. Brown, S.A. Aicher, B.A. Sorg // eNeuro – 2018. – V. 5, I. 5. –

ENEURO.0221–18.2018. doi: 10.1523/ENEURO.0221–18.2018

149. Alilain, W.J. Functional regeneration of respiratory pathways after spinal cord injury // W.J. Alilain, K.P. Horn, H. Hu, T.E. Dick, J. Silver // Nature – 2011. – V. 475, I. 7355. – P. 196–200. doi; 10.1038/nature10199.

150.Nakamura, M. Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex // M. Nakamura, K. Nakano, S. Morita, T. Nakashima, A. Oohira, S. Miyata // Brain Res. – 2009. – V 1252. – P. 117–129. doi: 10.1016/j.brainres.2008.11.022

151.Ueno, H. Parvalbumin neurons and perineuronal nets in the mouse prefrontal cortex // H. Ueno, S. Suemitsu, M. Okamoto, Y. Matsumoto, T. Ishihara

//Neuroscience – 2017. – V. 343. – P. 115–127. doi: 10.1016/j.neuroscience.2016.11.035

152.Yamada, J., Jinno, S. Spatio–temporal differences in perineuronal net expression in the mouse hippocampus, with reference to parvalbumin // Neuroscience – 2013. – V 253. – P. 368–379. doi: 10.1016/j.neuroscience.2013.08.061

124

https://t.me/medicina_free

153.Harris, N.G. Pericontusion axon sprouting is spatially and temporally consistent with a growth–permissive environment after traumatic brain injury // N.G. Harris, Y.A. Mironova, D.A. Hovda, R.L. Sutton // J. Neuropathol. Exp. Neurol. – 2010. – V. 69, I. 2. – P. 139–154. doi: 10.1097/NEN.0b013e3181cb5bee

154.Cregg, J.M. Functional regeneration beyond the glial scar // J.M. Cregg, M.A. DePaul, A.R. Filous, B.T. Lang, A. Tran, J. Silver // Exp. Neurol. – 2014. –

V.253. – P. 197–207. doi: 10.1016/j.expneurol.2013.12.024

155.Massey, J.M. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin–3 // J.M. Massey, J. Amps, M.S. Viapiano, R.T. Matthews, M.R. Wagoner, C.M. Whitaker,

W.Alilain, A L. Yonkof, A. Khalyfa, N.G.F. Cooper, J. Silver, S.M. Onifer // Exp. Neurol. – 2008. – V. 209, I. 2. – P. 426–445. doi: 10.1016/j.expneurol.2007.03.029

156.Nair, J. Histological identification of phrenic afferent projections to the spinal cord // J. Nair, T. Bezdudnaya, L.V. Zholudeva, M.R. Detloff, P.J. Reier, M.A. Lane, D.D. Fuller // Respir. Physiol. Neurobiol. – 2017. – V. 236. – P. 57–

68.doi: 10.1016/j.resp.2016.11.006

157.Wanner, I.B. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3–dependent mechanisms after spinal cord injury // I.B. Wanner, M.A.

Anderson, B. Song, J. Levine, A. Fernandez, Z. Gray–Thompson, Y. Ao, M.V. Sofroniew // J. Neurosci. – 2013. – V. 33. I. 31. – P. 12870–12886. doi: 10.1523/JNEUROSCI.2121–13.2013

158.Zhang, Q.G. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury // Q.G. Zhang, M.D. Laird, D. Han, K. Nguyen, E. Scott, Y. Dong, K.M. Dhandapani, D.W. Brann // PLoS One – 2012. – V. 7, I. 4. – e34504. doi: 10.1371/journ al.pone.0034504

159.Rees, M.D. Hypochlorite and super–oxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates //

125

https://t.me/medicina_free

M.D. Rees, C.L. Hawkins, M.J. Davies // Biochem. J. – 2004. – V. 381 (Pt. 1) – P.

175–184. doi: 10.1042/BJ20040148

160.Schilero, G.J. Traumatic spinal cord injury: pulmonary physiologic principles and management // G.J. Schilero, W.A. Bauman, M. Radulovic // Clin. Chest Med. – 2018. – V. 39, I. 2. – P. 411–425. doi: 10.1016/j.ccm.2018.02.002

161.Batty, N.J. The role of cAMP and its down–stream targets in neurite growth in the adult nervous system // N.J. Batty, K.K. Fenrich, K. Fouad // Neurosci. Lett. – 2017. – V. 652. – P. 56–63. doi: 10.1016/j.neulet.2016.12.033

162.Song, I., Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. – 2018. – V. 136. – P. 101–108. doi: 10.1016/j.brainresbull.2017.03.003

163А. Kaushik, R. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia // R. Kaushik, N. Lipachev, G. Matuszko, A. Kochneva, A. Dvoeglazova, A. Becker, M. Paveliev, A. Dityatev // Eur. J. Neurosci. – 2021. – V. 53, I. 12. – P. 3988–4004. doi: 10.1111/ejn.14853

164.Sigal, Y.M. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging // Y.M. Sigal, H. Bae, L.J Bogart, T.K Hensch , X. Zhuang // Proc. Natl. Acad. Sci. USA – 2019. – V. 116, I. 14. – P. 7071–7076. doi: 10.1073/pnas.1817222116

165.Beasley, C.L., Reynolds, G.P. Parvalbumin–immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics // Schizophrenia Research –

1997. – V. 24, I. 3. – P. 349–355. doi: 10.1016/S0920–9964(96)00122–3

166. Bitanihirwe, B.K., Woo, T.U. Transcriptional dysregulation of gamma– aminobutyric acid transporter in parvalbumin–containing inhibitory neurons in the prefrontal cortex in schizophrenia // Psychiatry Research – 2014. – V. 220, I. 3. –

P.1155–1159. doi: 10.1016/j.psychres.2014.09.016

167.Reynolds, G.P. Understanding the neurotransmitter pathology of schizophrenia: Selective deficits of subtypes of cortical GABAergic neurons // G.P. Reynolds, C.L. Beasley, Z.J. Zhang // Journal of Neural Transmission (Vienna) – 2002. – V. 109, I. 5–6. – P. 881–889. doi: 10.1007/s007020200072

126

https://t.me/medicina_free

168. Sakai, T. Changes in density of calcium–binding–protein– immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder // T. Sakai, A. Oshima, Y. Nozaki, I. Ida, C. Haga, H. Akiyama, Y. Nakazato, M. Mikuni // Neuropathology – 2008. – V. 28, I. 2. – P. 143–150. doi: 10.1111/j.1440–1789.2007.00867.x

169А. Lipachev, N. Postnatal development of the microstructure of cortical GABAergic synapses and perineuronal nets requires sensory input // N. Lipachev, A. Melnikova, S. Fedosimova , N. Arnst, A. Kochneva, N. Shaikhutdinov, A.

Dvoeglazova, A. Titova, M. Mavlikeev, A. Aganov, Y. Osin, A. Kiyasov, M. Paveliev // Neurosci. Res. – 2022. – V. 182. – P. 32–40. doi: 10.1016/j.neures.2022.06.005

170. Härtig, W. Wisteria floribunda agglutinin–labelled nets surround parvalbumin–containing neurons // Härtig, W., Brauer, K., Brückner, G. //

Neuroreport – 1992. – V. 3. – P. 869–872. doi: 10.1097/00001756–199210000– 00012

171.Wiesel, T.N., Hubel, D. H. Extent of recovery from the effects of visual deprivation in kittens // J. Neurophysiol. – 1965. – V. 28, I. 6. – P. 1060–1072. 10.1152/jn.1965.28.6.1060

172.Fagiolini, M. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation // M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, L. Maffei // Vision Res. – 1994. – V. 34, I. 6. – P. 709–720. doi: 10.1016/0042–

6989(94)90210–0

173.Berardi, N. Critical periods during sensory development // N. Berardi, T. Pizzorusso, L. Maffei // Curr. Opin. Neurobiol. – 2000. – V. 10, I. 1. – P. 138–

145.doi: 10.1016/s0959–4388(99)00047–1

174.Hensch, T.K. Local GABA circuit control of experience–dependent plasticity in developing visual cortex // T.K. Hensch, M. Fagiolini, N. Mataga, M.P. Stryker, S. Baekkeskov, S.F. Kash // Science – 1998. – V. 282, I. 5393. – P. 1504–1508. doi: 10.1126/science.282.5393.1504

127

https://t.me/medicina_free

175. Huang, Z.J. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex // Z.J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales, M.F. Bear, L. Maffei, S. Tonegawa // Cell – 1998. – V. 98, I. 6. – P. 739–755. doi: 10.1016/s0092–8674(00)81509–3

177. Kirkwood, A. Co–regulation of long–term potentiation and experience– dependent synaptic plasticity in visual cortex by age and experience // A. Kirkwood, H.K. Lee, M.F. Bear // Nature – 1994. – V. 375, I. 6529. – P. 328–331. doi: 10.1038/375328a0

177.Bitanihirwe, B.K. Weaving a Net of Neurobiological Mechanisms in Schizophrenia and Unraveling the Underlying Pathophysiology // B.K. Bitanihirwe, S.A. Mauney, T.U.W. Woo // Biol. Psychiatry – 2016. – V. 80, I. 8. – P. 589–598. doi: 10.1016/j.biopsych.2016.03.1047

178.Pantazopoulos, H. Berretta, S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders // Neural Plast. – 2016. –

9847696. doi: 10.1155/2016/9847696

179.Sur, M., Expression of a surface–associated antigen on Y–cells in the cat lateral geniculate nucleus is regulated by visual experience // M. Sur, D.O. Frost, S. Hockfield // J. Neurosci. – 1988. – V. 8, I. 3. – P. 874–882. doi: 10.1523/JNEUROSCI.08–03–00874.1988

180.Guimarães, A. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat–304 and Cat–301 // A. Guimarães, S. Zaremba, S.

Hockfield // J. Neurosci. – 1990. – V. 10, I. 9. – P. 3014–3024. doi: 10.1523/JNEUROSCI.10–09–03014.1990

181.Kind, P.C. Effects of early periods of monocular deprivation and reverse lid suture on the development of Cat–301 immunoreactivity in the dorsal lateral geniculate nucleus of the cat // P.C. Kind, C.J. Beaver, D.E. Mitchell // J. Comp. Neurol. – 1995. – V. 359, I. 4. – P. 523–536. doi: 10.1002/cne.903590402

128

https://t.me/medicina_free

182.Fox, K. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex // Neuroscience – 2002. – V. 111, I. 4. – P. 799–814. doi: 10.1016/s0306–4522(02)00027–1

183.Glazewski, S., Fox, K. Time course of experience–dependent synaptic potentiation and depression in barrel cortex of adolescent rats // J. Neurophysiol. –

1996. – V. 75, I. 4. – P. 1714–1729. doi: 10.1152/jn.1996.75.4.1714

184.Paveliev, M. HB–GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix // M. Paveliev, K.K. Fenrich, M. Kislin, J. Kuja–Panula, E. Kulesskiy, M. Varjosalo, T. Kajander, E. Mugantseva, A. Ahonen–Bishopp, L. Khiroug, N. Kulesskaya, G. Rougon, H. Rauvala // Scientific Reports – 2016. – V. 6. – 33916. doi: 10.1038/srep33916

185.Rauvala, H. Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans // H. Rauvala, M. Paveliev, J. Kuja–Panula, N. Kulesskaya // Neuronal Regeneration Research – 2017. – V. 12, I. 5. – P. 687–691. doi: 10.4103/1673–5374.206630

186.Chaudhry. F.A. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons // F.A. Chaudhry, R.J. Reimer, E.E. Bellocchio, N.C. Danbolt, K.K. Osen, R.H. Edwards, J. Storm–Mathisen // J. Neurosci. – 1998. – V. 18, I. 23. – P. 9733–9750, doi: 10.1523/JNEUROSCI.18–23–09733.1998

187.McRae, P.A. Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex // P.A. McRae, M.M. Rocco, G. Kelly, J.C. Brumberg, R.T. Matthews // J. Neurosci. – 2007. – V. 27, I. 20. – P. 5405–5413. doi: 10.1523/JNEUROSCI.5425–06.2007

188А. Липачев, Н.С. Сравнительный анализ методов количественного исследования микроструктуры перинейрональных сетей // Н.С. Липачев, А.С.

Двоеглазова, А.А. Садреева, А.В. Аганов, М.Н. Павельев // Учен. зап. Казан.

ун–та. Сер. Естеств. науки. – 2022. – Т. 164, Кн. 4. – С. 519–534. doi: 10.26907/2542–064X.2022.4.519–534

129

https://t.me/medicina_free