Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
неорг химия экз.docx
Скачиваний:
3
Добавлен:
10.02.2024
Размер:
2.91 Mб
Скачать
  1. Основные стехиометрические законы.

Закон сохранения массы:

- Масса в-в вступивших в реакцию в-в равна массе в-в образовавшихся после реакции.

Закон постоянства состава:

- Всякое чистое вещество независимо от способа его получения имеет постоянный количественный и качественный состав.

Закон эквивалентов:

- Массы реагирующих друг с другом в-в, а так же массы продуктов этой реакции пропорциональны массам эквивалентов этих веществ.

Закон объемных отношений Г. Люссака:

- При неизменной температуре и давлении объемы вступающих в реакцию газов относятся друг к другу, а также к объемам образовавшихся газообразных продуктов, как небольшие целые числа.

Закон Авогадро:

- В равных объемах различных газов при одинаковых условиях (t, p) содержится равное число молекул.

Объединенный газовый закон:

- Объединение трех независимых частных газовых законов: Гей-Люссака, Шарля, Бойля-Мариотта, уравнение, которое можно записать так: P1V1 / T1 = P2V2 / T2

Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:

PV= (m/M) RT

где m - масса газа; M - молекулярная масса; P - давление; V - объем; T - абсолютная температура (К); R - универсальная газовая постоянная 8,314 Дж/(моль·К).

Для данной массы конкретного газа отношение m/M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.

Закон парциальных давлений:

- Общее давление смеси газов, химически не взаимодействующих друг с другом равно сумме парциальных давлений газов, составляющих смесь :

р = р1+р1+р3+...

4. Важнейшие классы и номенклатура неорганических веществ.

Все в-ва в природе делят на простые и сложные. Простые вещества состоят из атомов одного элемента, например S, O2, Cl2, Na, P. Простые вещества разделяют на металлы и неметаллы. Это деление основано на различиях в физических свойствах простых веществ.

Металлы отличаются характерным «металлическим» блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.

Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.

Сложные вещества делят на органические, неорганические. Неорганическая химия охватывает химию всех элементов периодической системы. Свойства органических соединений существенно отличаются от свойств неорганических, а элементоорганические соединения, с учетом их специфики, занимают промежуточное положение. С классификацией органических и элементоорганических соединений удобнее познакомиться при изучении соответствующих разделов химии, посвященных этим соединениям.

Неорганические вещества разделяются на классы либо по составу (двухэлементные, или бинарные, соединения и многоэлементные соединения; кислородсодержащие, азотсодержащие и т. п.), либо по химическим свойствам, т. е. по функциям (кислотно-основным, окислительно-восстановительным и т. д.), которые эти вещества осуществляют в химических реакциях, - по их функциональным признакам.

К важнейшим бинарным соединениям относятся любые соединения только двух различных элементов.

Из бинарных соединений наиболее известны оксиды. По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные). Солеобразующие оксиды, в свою очередь, подразделяются на основные, кислотные и амфотерные.

Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей. Присоединяя (непосредственно или косвенно) воду, основные оксиды образуют основания. Например, оксид кальция СаО реагирует с водой, образуя гидроксид кальция Са(ОН)2:

 СаО + Н20 = Са(ОН)2 .

 Оксид магния MgO - тоже основной оксид. Он малорастворим в воде, но ему соответствует основание - гидроксид магния Mg(OH)2, который можно получить из MgO косвенным путем.

Кислотными называются оксиды, взаимодействующие с основаниями (или с основными оксидами) с образованием солей. Присоединяя (непосредственно или косвенно) воду, кислотные оксиды образуют кислоты. Так, триоксид серы SO3 взаимодействует с водой, образуя серную кислоту H2S04:

 S03 + H20 = H2S04.

 Диоксид кремния Si02 - тоже кислотный оксид. Хотя он не взаимодействует с водой, ему соответствует кремниевая кислота H2Si03, которую можно получить из Si02 косвенным путем.

Один из способов получения кислотных оксидов - отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.

Амфотерными называются оксиды, образующие соли при взаимодействии как с кислотами, так и с основаниями. К таким оксидам относятся, например, А120з, ZnO, Pb02, Cr203.

Несолеобразующие оксиды, как видно из их названия, не способны взаимодействовать с кислотами или основаниями с образованием солей. К ним относятся N2O, NO и некоторые другие оксиды.

Кислотами с позиций теории электролитической диссоциации называются вещества, диссоциирующие в растворах с образованием ионов водорода. С точки зрения протонной теории кислот и оснований к кислотам относятся вещества, способные отдавать ион водорода, т. е. быть донорами протонов. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

 H2S04 + 2NaOH = Na2S04 + 2H20;

 Кислоты классифицируют по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты. По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO3, серная H2S04 и соляная НС1. По наличию кислорода различают кислородсодержащие кислоты (HNO3, Н3РО4 и т. п.) и бескислородные кислоты (НС1, H2S, HCN и т. п.).

По основности, т. е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяют на одноосновные (например, НС1, HNO3), двухосновные (H2S, H2SO4), трехосновные (Н3РО4) и т.д.

Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов, т. е. основные гидроксиды.

Наиболее характерное химическое свойство оснований — их способность взаимодействовать с кислотами (а также с кислотными и амфотерными оксидами) с образованием солей, например:

 КОН + НС1 = КС1 + Н2O;

К солям относятся вещества, диссоциирующие в растворах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид-ионов. Соли можно рассматривать как продукты замещения атомов водорода в кислоте атомами металлов (или группами атомов, например, группой атомов NH4) или как продукты замещения гидроксогрупп в основном гидроксиде кислотными остатками. При полном замещении получаются средние (или нормальные) соли. При неполном замещении водорода кислоты получаются кислые соли, при неполном замещении гидроксогрупп основания - основные соли. Ясно, что кислые соли могут быть образованы только кислотами, основность которых равна двум или больше, а основные соли - гидроксидами, содержащими не менее двух гидроксогрупп. Примеры образования солей: Са(ОН)2 + H2S04 = CaS04 + 2H20