Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

7185

.doc
Скачиваний:
5
Добавлен:
13.03.2015
Размер:
261.12 Кб
Скачать

Пример: у=(2х2-1)/х. 1)вертик.асимптоты х=0; lim х→0+0(2х2-1)/х= -∞; lim х→0-0(2х2-1)/х=∞; х=0-вертик. асимптота. 2) наклонные асимптоты y=kx+b; k=limx→+-∞ f(х)/х= limx→+-∞(2х2-1)/хх =[∞∕∞]= limx→+-∞2(2-1/х2)/х2=2; b= limx→∞[f(x)-kx]= limx→∞[(2х2-1)/х-2х]= limx→∞(2х2-1-2х2)/х = limx→∞(-1)/х =0. у=2х+0; у=2х-наклонная асимтота. {если k=0, то горизонтальная асимптота }, {если получается ∞, то горизонтальных и вертикальных асимптот нет}.

33 Общая схема исследования ф-ий и построения их графиков. Пример.

1) Область определения ф-ии, 2) исследовать на четность, нечетность, 3) найти асимптоты графика, 4)Исследовать ф-цию на возрастание и убывание и найти экстремумы. 5) Найти точки пересечения с осями координат. 6) Построить график ф-ции.

Пример: у= х2/(1-х2). 1) 1-х2≠0, х≠ + -1, (-∞;-1)V(-1;1)V(1;+∞). 2) четная- симметрична относительно ОУ. 3) асимптоты : -вертикальные: х= -1 limx→-1-ox2/(1-х2)= -∞;

limx→-1+ox2/(1-х2)=+∞. Х=1 limx→1-ox2/(1-х2)= +∞; limx→1+ox2/(1-х2)= -∞; х=1; х= -1-вертикальные асимптоты. Наклонные: y=kx+b; k=limx→+-∞ f(х)/х= limx→+-∞2(1-х2)х) =[∞∕∞]= limx→+-∞(х/х2(1/х2-1)=0; k=0; b= limx→∞[f(x)-kx]= limx→∞2/(1-х2)]=[∞/∞]= 2х/(-2)х= -1 b= -1; y= -1 –горизонтальная асимптота. 4) у/2/(1-х2)=(2х2(1-х2)+х2(2х))/(1-х2)2=2х/(1-х2)2. у/=0, у/- не сущ. 2х=0, х=0 , 1-х2=0, х= +-1. min(0;0), 5) ОХ у=0, х=0; ОУ х=0 у=0.

6)

34 а)Ф-ции нескольких переменных. Примеры.б)Частные производные (определение). в)Экстремум ф-ции нескольких переменных и его необходимое условие.

а) Пусть имеется п переменных величин и каждому набору из значений (х1,х2,…,хп) из некоторого множества Х соответствует одно вполне определенное значение переменной величины z. Тогда говорят, что задана ф-ция нескольких переменных z=f(x1,…,xn). Z=πх12х2- задает объем цилиндра z как ф-цию 2-ух переменных: х1(радиус основания) и х2(высоты). Z=а1х12х2+…+ апхп+ b, где а,…, ап, b-постоянные числа (линейная ф-ция). Ф-ция Z=1/2∑пi,j=1bijxixj (bij-постоянные числа) называется квадратической.

б) Частной производной ф-ции нескольких переменных по одной из этих переменных называется предел отношения соответствующего частного приращения ф-ции к приращению рассматриваемой независимой переменной при стремлении последнего к 0( если этот предел сущ) Z/x, f /х(х,у) .

в) Точка М(хо;уо) называется точкой максимума (минимума) ф-ции z=f(x,у), если сущ окрестность точки М, такая, что для всех точек (х;у) из этой окрестности выполняется неравенство f(xo;yo)≥f(x;y)(( f(xo;yo)≤f(x;y)).

Необходимое условие экстремума. Теорема: Пусть точка (xo;yo)- есть точка экстремума дифференцируемой ф-ции z=f(x,у). Тогда частные производные f /х(xo;yo) и f /у(xo;yo) в этой точке =0.

35 а)Понятие об эмпирических формулах и методе наименьших квадратов.б) Подбор параметров линейной ф-ции( вывод системы нормальных уравнений).

а) Формулы служащие для аналитического представления опытных данных наз эмпирическими формулами. Суть метода наименьших квадратов: Неизвестные параметры ф-ции у= f(x) подбираются таким образом, чтобы ∑ квадратов невязок была минимальной. Невязками наз отклонения м/д теоретическими значениями f(xi), полученных по формуле у= f(x) и эмпирическими значениями уi обозначается δi= f(xi)-уi.

б) Предположим, что м/д х и у сущ линейная зависимость (х, у- переменные), т е у=ах+b. ∫=∑пi=1(ахi+b-yi)2 должна быть min. а,b-переменные;{S/а=0, S/b=0}; S/а=∑пi=12(ахi+b-yi)(хi)=0, S/b=∑пi=12(ахi+b-yi)1=0; ∑пi=1(ахi+b-yi)(хi)=0, ∑п0=1(ахi+b-yi)=0; {∑пi=1ахi+∑пi=1i-∑пi=1yiхi=0; ∑п0=1ахi+∑п0=1b-∑п0=1yi)=0};и {а∑хi2+b∑хi=∑yiхi; a∑хi+nb=∑yi}.

36 а)Дифференциал ф-ции и его геометрический смысл. б)Инвариантность формы дифференциала 1-го порядка.

а)Дифференциалом ф-ции наз главная линейная относительно ∆х часть приращения ф-ции равная произведению производной на приращение независимой переменной (обозначается dy- главная линейная часть) dy= f(x) ∆х (1). Дифференциал независимой переменной х равен приращению этой переменной, тогда формулу (1) можно записать как dy= f/(x)dх. С геометрической точки зрения дифференциал ф-ии есть приращение ординаты касательной, проведенной к графику ф-ции у= f(x) в данной точке, когда х получает приращение ∆х.

Рассм график ф-ии у= f(x):

т.М –произвольная, <φ-егол наклона касательной к ОХ. ∆у=АВ+ВК, из ∆АМВ найдем АВ: АВ=tg φМА= tg φ∆х=f /(х) ∆х; ∆у= f /(х) ∆х+ВК.

б)Инвариантность (неизменность) формулы дифференциала: Если ф-ция у= f (х), следов. dy= f/(x)dх. Рассм сложную ф-цию у=f(u),где u=φ(х). Найдем производную ф-ции. у/х= f /u∙ u/х |∙ dх; у/х dх= f /u∙ u/х dх; dу= f /u∙ du. Т о видно, что формула дифференциала не изменится, если вместь ф-ции от независимой переменной Х рассматривать ф-цию от зависимой переменной u.

52 а)Знакочередующиеся ряды. б)признак Лейбнмца сходимости знакочередующихся рядов.в)Абсолютная и условная сходимость рядов.

а) Под знакочередующимся рядом понимается ряд, в котором члены попеременно то положительны, то отрицательны: и1234+…+(-1)п-1ип+…, где ип>0.

б)Теорема(Признак Лейбница). Если члены знакочередующегося ряда убывают по абсолютной величине и12>…>un>…и предел его общего члена при п→∞ равен 0, т е limun=0,то ряд сходится, а его сумма не превосходит первого члена: S≤u1.

в) Ряд наз абсолютно сходящимся, если сходятся как сам ряд, так и ряд, составленный из абсолютных величин его членов. Ряд наз условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

14 а)Понятие элементарной ф-ции. б)Основные элементарные ф-ии и их графики (постоянная, степенная, показательная, логарифмическая).

а) Ф-ции, построенные из основных элементарных ф-ий с помощью конечного числа алгебраических действий и конечного числа операций образования сложной ф-ции, наз элементарными.

б)1)Постоянная: у=b (b||OX) (рис.)

2)Степенная: А) у=хп, п -натуральное число. Для п-четного (рис у=х2, у=х4): 1-D(f)=(-∞;+∞); 2-Е(f)=[0;+∞); 3(-∞;0)-убывает, (0;+∞)-возрастает; 4-четные; 5- непериодические. Для п-нечетного(рис у=х, у=х3, у=х5): 1- D(f)=(-∞;+∞); 2-Е(f)=(-∞;+∞); 3- (-∞;+∞)-возрастает; 4- нечетные; 5- непериодичные. Б) у=1/хп, п- натуральное число. Для п-четного (рис у=1/х2, у=1/х4); 1-D(f)=(-∞;0)V(0;+∞); 2-Е(f)=[0;+∞); 3(-∞;0)- возрастает, (0;+∞)- убывает; 4-четные; 5- непериодические. Для п-нечетного(рис у=1/х): 1- D(f)=(-∞;0)V(0;+∞); 2-Е(f)= (-∞;0)V(0;+∞); 3-(-∞;0), (0;+∞)-убывает; 4- нечетные; 5- непериодичные. В) у=х1/п. Для п-четного (рис у=х1/2). 1-D(f)=[0;+∞); 2-Е(f)=[0;+∞); 3(0;+∞)-возрастает; 4-общего вида; 5- непериодические. Для п-нечетного(рис у=х1/3): 1- D(f)=(-∞;+∞); 2-Е(f)=(-∞;+∞); 3- (-∞;+∞)-возрастает; 4- нечетные; 5- непериодичные.3)Показательная: у=ах (а>0; a≠1). Для а>1(рис): 1-D(f)=(-∞;+∞); 2-Е(f)=(0;+∞); 3(-∞;+∞)-возрастает; 4-общего вида; 5- непериодические. Для 0<a<1(рис): 1- D(f)=(-∞;+∞); 2-Е(f)=(0;+∞); 3- (-∞;+∞)-убывает; 4- общего вида; 5- непериодичные. 4)Логарифмическая: (а>0; a≠1). У=logax. Для а>1(рис): 1-D(f)=(0;+∞); 2-Е(f)=(-∞;+∞); 3(0;+∞)-возрастает; 4-общего вида; 5- непериодические. Для 0<a<1(рис): 1- D(f)=(0;+∞); 2-Е(f)=(-∞;+∞); 3- (0;+∞)-убывает; 4- общего вида; 5- непериодичные.

23 а)Непрерывность ф-ии в точке и на промежутке.б) Св-ва ф-ций, непрерывных на отрезке. в)Точки разрыва.г)Примеры.

а) Функция у= f (х) наз непрерывной в точке хо, если она удовлетворяет след условиям:1)определена в точке хо, т е сущ f (хо), 2) сущ конечные односторонние пределы ф-ии при х→хо слева и справа. 3) Эти пределы равны значению ф-ии в точке f (хо)=limxxo-o f (х)= limxxo+o f (х). Ф-ия у= f (х) наз непрерывной на промежутке Х, если она непрерывна в каждой точке этого промежутка.

б)1о Если ф-ия у= f (х) непрерывна на отрезке [a;b],то она ограничена на этом отрезке. (рис.) 2о Если ф-ия у= f (х) непрерывна на отрезке [a;b],то она достигает на этом отрезке наименьшего значения т и наименьшего М. (рис). 3о Если ф-ия у= f (х) непрерывна на отрезке [a;b] и значения ее на концах отрезка f (а) и f (b) имеют противоположные знаки, то внутри отрезка найдется т. Е є (a;b) такая, что f (Е)=0. (рис).

в) Если в какой-либо точке хо для ф-ии у=f(х) не выполняется по крайней мере одно из условий непрерывности, то точка хо наз точкой разрыва ф-ии, причем 1)если сущ конечные односторонние пределы ф-ии, не равные др другу, т е limxxo-o f (х)≠ limxxo+o f (х), то точка хо наз точкой разрыва 1-го рода. 2)если хотябы один из односторонних пределов ф-ии =∞ или несущ: limxxo-o f (х)=∞, limxxo+o f (х)=∞, то точка хо наз точкой разрыва 2-го рода.

г) Пример: Исследовать ф-цию на непрерывность, установить характер точек разрыва. У=х/(х-1) х=1 1) f(1)-неопределенна, 2) limx→1-o х/(х-1)= -∞, limx→1+o х/(х-1)= +∞,

х=1- точка разрыва 2-го рада.

28 Теоремы Ролля и Лагранжа (без док-ва). Геометрическая интерпретация этих теорем.

Теорема Роля: Пусть ф-ия у= f (х) удовлетворяет след условиям: 1) непрерывна на отрезке [a;b],2) дифференцируема на интервале (a;b), 3) на концах отрезка принимает равные значения f (а)=f (b), тогда внутри отрезка сущ по крайней мере одна точка С є (a;b), производная в кот =0, f /(С)=0.Рассм геометрич смысл теоремы: Теорема Роля утверждает, что если ф-ция удовлетворяет всем указанным условиям, то внутри интервала найдется хотыбы одна точка С (в нашем сл их 3-С123), касательная к графику в этой точке будет параллельна оси ОХ.

Теорема Лагранжа: Пусть ф-ия у= f (х) удовлетворяет след утверждениям: 1) непрерывна на отрезке [a;b],2) дифференцируема на интервале (a;b), то тогда внутри интервала (a;b) сущ по крайней мере одна точка С є(a;b), производная ф-ии в кот =отношению приращения ф-ии на этом интервале к приращению аргумента f /(С)=(f (b)- f (с))/ (b-с). Рассм геометрич смысл теоремы: Теорема Лагранжа утверждает, что в интервале (a;b) найдется по крайней мере одна точка С такая, что касательная проведенная к графику ф-ии в этой точке будет || прямой АВ, соединяющей концы графика ф-ии на отр АВ.

24 а)Производная и ее геометрический смысл.б) Уравнение касательной к плоскости кривой в заданной точке.

а)Производной ф-ии у= f (х) наз предел отношения приращения ф-ции ∆у к приращению аргумента ∆х при условии, что ∆х→0: у/=lim∆х→0∆у/∆х.. Геометрич смысл производной ф-ии в точке: производная ф-ии в точке равна угловому коэффициенту касательной к графику ф-ии в этой точке. k=f /о).

б) у-уо= f / хоо)(х-хо)- уравнение касательной.

25 а)Дифференцируемость ф-ции одной переменной.б) Связь м/д дифференцируемостью и непрерывностью ф-ии (доказать теорему).

б)Теорема: Если ф-ия у= f (х) дифференцируема в точке хо, то она в этой точке непрерывна.

По усл ф-ия у= f (х) дифференцируема в точке хо, т е сущ конечный предел lim∆х→0∆у/∆х= f /о),где f /о)-постоянная величина, не зависящая от ∆х. Тогда на основании теоремы о связи бесконечно малых с пределами ф-ий можно записать: ∆у/∆х= f /о)+L(∆х), где L(∆х)- бесконечно малая величина при ∆х→0 или ∆у= f /о) ∆х +L(∆х) ∆х. При ∆х→0 на основании св-в бесконечно малых устанавливаем, что ∆у→0 и следов по опред ф-ия у= f (х) в точке хо явл непрерывной. Обратная теорема не верна. Т о неперерывность ф-ии необходимое, но не достаточное усл дифференцируемости ф-ии.

37 а)Понятие первообразной ф-ции. б)Неопределенный интеграл и его св-ва (одно доказать).

а) Ф-ия F(x) наз первообразной ф-ией для ф-ии f (х) на интервале Х, если в каждой точке этого интервала F/ (x)= f (х).

б) совокупность всех первообразных ф-ции f (х) на промежутке Х наз неопред интегралом от ф-ии f (х). Обозначается ∫ f (х)dx=F(x)+C , (х)-подынтегральная ф-ия. f (х)dx-подынтегральное выражение, dx-дифференциал переменной интегрирования. Св-ва: 1)Производная от неопределенного интеграла равна подынтегральной ф-ии (∫ f (х)dx)/= f(х). Дифференцирую левую и правую части равенства, получаем: (∫ f (х)dx)/=( F(x)+C)/= F/ (x)+C/= f (х). 2) дифференциал от неопределенного интеграла равен подынтегральному выражению. d (∫ f (х)dx)= f (х)dx. 3) Неопределенный интеграл от дифференциала некоторой ф-ии равен этой ф-ии с точностью до постоянного слагаемого ∫ d F(x)= F(x)+С. 4) Постоянный множитель можно выносить за знак интеграла: ∫С f (х)dx=С ∫f(х)dx; 5) Интеграл от суммы (разности) ф-ий равен сумме (разности) интегралов от этих ф-ий: ∫(f(х)+- g(х)) dx= ∫f(х) dx +- ∫g(х) dx.

38 Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.

Пусть задан интеграл ∫ f (х)dx- не может быть непосредственно преобразован к табличному интегралу. Введем новую переменную t след образом: х=φ(t). Dx= φ/(t)dt. ∫ f (х)dx=∫ f [φ(t)]φ/ (t)dt=∫ φ(t)dt-формула замены переменной в неопред интеграле.

Пусть ф-ия х= φ(t) имеет непрерывную производную на отрезке [L;B], причем а=φ(L), b=φ(B). А данная ф-ия f (х) не прерывна в каждой точке х, где х= φ(t), тогда справедлива след формула: ∫ba f (х)dx=∫ba f [φ(t)]φ/ (t)dt- формула замены переменной в определенном интеграле.

41 а)Теорема о производной определенного интеграла по переменному верхнему пределу. б)ТФормула Ньютона-Лейбница.

а)Теорема: Пусть ф-ия f (х) непрерывна на отрезке [a;b], тогда в каждо точке х отрезка [a;b] производная ф-ии Ф(х) по переменному верхнему пределу равна подынтегральной ф-ии f (х), т е Ф/(х)=(∫хаf(t)dt)=f(x).

б) Пусть ф-ия у=f (х) непрерывна на отрезке [a;b], F(x)-любая первообразная для ф-ии f (х) на отрезке [a;b], тогда определенный интеграл от ф-ии f (х) на отр [a;b] равен приращению первообразной F(x) на этом отрезке: ∫baf(x)dx=F(b)-F(a)=F(x)|ba.-формула Ньютона-Лейбница.

42 а)Несобственные интегралы с бесконечными пределами интегрирования.б)Интеграл Пуассона(без док-ва)

а) Несобственным интегралом с бесконечным верхним переделом+∞а f(x)dx от ф-ии f(x) наз предел интеграла ∫tа f(x)dx, t→+∞, ∫+∞а f(x)dx=limt→+∞ tа f(x)dx. Если этот предел сущ или равен конечному числу, то интеграл наз сходящимся, а противном случае расходящимся. Аналогично: Несобственный интеграл с нижним бесконечным пределом:b-∞ f(x)dx=limt→-∞ bt f(x)dx.

43 вычисление площадей плоских фигур с помощью определенного интеграла. Примеры.

1)Пусть ф-ия у= f(x) неопределенна и неотрицательна на отр [a;b], тогда согласно геометрическому смыслу определенного интеграла S криволинейной трапеции, ограниченной кривой у= f(x), осью ОХ, слева прямой х=а, справа прямой х=b численно равна опред интегралу от ф-ии f(x) на отрезке [a;b]. S=∫baf(x)dx. (рис).

2)Если ф-ия у= f(x) неположительная на отр [a;b], то S над кривой у= f(x) вычисляется по формуле : S=-∫baf(x)dx. (рис).

3)Пусть плоская область ограничена сверху ф-ией у= f(x), снизу ф-ией у= g(x), слева и справа прямыми х=а, х=b, тогда ее S вычисляется по формуле: S=∫ba[f(x)-g(x)]dx. (рис).

Пример: Вычислить площадь фигуры ограниченной линиями у= -х2,у=е,х=0,х=1. (рис). S=∫1o(e2x+x2)dx=∫1oe2xdx+∫1ox2dx=| 2x=t, 2dt=dt, x=0 t=0, x=1 t=2|= 1/2∫20etdt+x3/3|1o=1/2et|2o+1/3=1/2(e2-eo)+1/3=e2/2-1/6 (кв.ед).

45 а)Понятие о дифференциальном уравнении.б)Общее и частное решения.в) Задача Коши.г)Задача о построении матеметической модели демографического процесса.

а)Дифференциальным уравнением наз уравнение, связывающее искомую ф-цию одной или нескольких переменных, эти переменные и производные различных порядков донной ф-ии.

б)Общим решением дифференциального ур-ния g(x,y,y/,…,y(n))=0 n-го порядка наз такое его решение у=φ(х,с1,…,сп), кот явл ф-ией переменной х и произвольных независимых постоянных С1,С2,…,Сп. (независимость постоянных означает отсутствие каких-либо соотношений м/д ними). Частным решением дифференциального ур-ния наз решение, получаемое из общего решения при некоторых конкретных числовых значениях постоянных С1,С2,…,Сп.

47 Однородные и линейные дифференциальные уравнения 1-го порядка и их решения. Примеры.

Однородные: у/=f(y/x). Решение: Выполняем замену у=и(х)х. у/=и/х+х/и=и/х+и. и/х+и=f(их/х).Получили уравнение с разделяющими переменными: и/х=f(и)и. хdи/х=f(и)-и. Пример: (ху-х2/2-уравнение с разделяющими переменными у/2/(ху-х2)=у22(у/х-1)=(у/х)2/(у/х-1)-однородное уравнение. и/х+и=f(их/х)=(их/х)2/(их/х-1); и/х+и=и2/(и-1); dи/dx∙х=(и2/(и-1))-и; dи/dx∙х=и/(и-1); dи∙х=и(и-1) dx; (и-1)/и dи=dх/х; ∫(и-1)/и dи =∫ dх/х; ∫(и-1)/и=∫и/и-∫1/и=и-ln|и|; и=ln|u|+C=lnx; u=ln|u|+ln|x|+ln|C|; u=ln|cux|; y|x=ln|cy/xx|; y/x=ln|cy|; y=xln|cy|.

Линейные: у/+Р(х)у=Q(x). Решение: Замена у=u(x)∙v(x) или y=uv. y/=u/v+v/u, y=u(x)v(x). u(v/+P(x) v)+u/v= Q(x). Пусть { v/+P(x) v =0; u/v= Q(x)}. Каждое уравнение системы явл дифференциальным уравнением с разделяющими переменными. Решаем их и записываем общее решение, как у=u v. Пример: у/-2у=е, у= u(x)∙v(x), y/=u/v+v/u, u/v+v/u-2 uv=е; u(v/-2v)+u/v=e2x; {u/-2v=0,u/v=e2x}; dv/dx=2v; dv=2vdx; dv/v=2dx; ∫dv/v=2∫dx; ln|v|=2x+C (C=0); v=e2x. u/v=e2x; u/e2x=e2x; u/=1; du/dx=1; du=dx; ∫du=∫dx; u=x+C; y=uv=(x+C)e2x-общее решение.

48 а)Определение числового ряда.б) Сходимость числового ряда.в) Необходимый признак сходимости рядов (доказать). Примеры.

а)Числовым рядом наз бесконечная последовательность чисел и1,и2,…,ип,…, соединенных знаком сложения. и1+и2+…+ип…=∑п=1ип,, и1+и2+…+ип…-члены ряда, ип-общий или п-ый член ряда.

б)Ряд наз сходящимся, если сущ конечный предел последовательности его частичных сумм, т е limn→∞Sn=S. Число S- сумма ряда. В этом смысле можно записать и1+и2+…+ип+…=∑п=1ип=S.

в)Теорема( необходимый признак сходимости). Если ряд сходится, то предел его общего члена ип при п→∞ равен нулю, т е lim п→∞un=0. Выразим п-ый член ряда ч/з сумму его п и (п-1) членов, т е ип=Sn-Sn-1. Т к ряд сходится, то lim п→∞ Sn=S и lim п→∞Sn-1=S, следов. lim п→∞un= lim п→∞ (Sn- Sn-1)= lim п→∞ Sn- lim п→∞Sn-1=S-S=0.

Пример: п=1(4n+3)/(5n-7); lim п→∞un= lim п→∞(4n+3)/(5n-7)=4/5≠0, т е ряд расходится.

15 а) Уравнение линии на плоскости. б)Точка пересечения двух линий.в) Огсновные виды уравнений прямой на плоскости (одно из них вывести).

а) Уравнением линии на плоскости Оху наз уравнение, кот удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой прямой.

б) Пусть даны две прямые А1х+В1у+С1=0 и А2х+В2у+С2=0. Очевидно, координаты их точки пересечения должны удовлетворять уравнению каждой прямой, т е они могут быть найдены из системы: { А1х+В1у+С1=0 ; А2х+В2у+С2=0}. Если прямые не параллельны, т е А12≠В12, то решение системы дает ед точку пересечения прямых.

30 а)Определение экстремума ф-ии одной переменной.б) Необходимый признак экстремума (доказать).

а)Экстремумами наз точки максимума и минимума. Точка хо наз точкой максимума ф-ии f(x), если в некоторой окрестности т. хо выполняется неравенство f(x)≥f(xo). Точка х1 наз точкой минимума ф-ии f(x), если в некоторой окрестности т. х1 выполняется неравенство f(x)≤f(x1).

б)Необходимое условие экстремума: Для того чтобы ф-ия у= f(x) имела экстремум в точке хо, необходимо, чтобы ее производная в этой точке равнялась нулю (f /(xo)=0) или не существовала.

50 Признаки сравнения Доламбера сходимости знакоположительных рядов. Примеры.

Теорема. Пусть для ряда ∑п=1ип с положительными членами сущ предел отношения (п+1)-го члена к п-му члену limn→∞(un+1)/un=L. Тогда, если l<1, то ряд сходится, если l>1, то расходится, если l=1, то вопрос остается нерешенным. Примеры: а) ½+2/22+…+п/2п+…, т к limn→∞(un+1)/un= limn→∞((п+1)/(2п+1))п/2п= limn→∞(п+1)/2п=1/2<1, то по признаку Даламбера ряд сходится. б) ∑п=13пп!/пп, т к limn→∞(un+1)/un= limn→∞(3п+1(п+1)!/(п+1)п+1)/(3пп!/пп)= limn→∞(3п/(п+1))п=3/( limn→∞(п/(п+1))п=3/е>1-расходится.

51 Интегральный признак сходимости знакоположительных рядов. Пример.

Теорема: Пусть дан ряд ∑п=1ип,члены кот положительны и не возрастают, т е u1≥u2 ≥…≥un≥…, а ф-ия f(x), определенная при х≥1, непрерывная и невозрастающая и f(1)=u1, f(2)=u2,…, f(n)=un,…,тогда для сходимости ряда ∑п=1ип необходимо и достаточно, чтобы сходился несобственный интеграл ∫1f(x)dx. Пример:п=11/п2. Пусть f(x)=1/x2. Функция f(x) при х>0 (а значит и при х≥1) положительная и невозрастающая (точнее убывающая). Поэтому сходимость ряда равносильна сходимости несобственного интеграла ∫1dx/х2, следов. I=∫1dx/x2=limb→∞b1 dx/x2. Если L=1, то I= limb→∞(ln|x||b1)= limb→∞(ln|b|-ln1)=∞. Если L≠1, то I= limb→∞((x -L+1)/(-L+1)|b1)= 1/(1-L) limb→∞(b1-L-1)={1|(L-1) при L>1; ∞ при L <1}-ряд сходится при L>1 и расходится при L ≤1 .

17 а)Предел последовательности при п→∞ и предел ф-ии при х→∞.б) Признаки существования предела (с доказательством теоремы о пределе промежуточной ф-ии).

а) Число А наз пределом чиловой последовательности {an}, если для любого, даже сколь угодно малого положительного числа ε >0, найдется такой номер N (зависящий от ε, N=N(ε)), что для всех членов последовательности с номерами n>N верно неравенство |an-A|<ε. Предел числовой последовательности обозначается limn→∞an=A или an→∞ при n→∞. Последовательность, имеющая предел, наз сходящейся, в противном случае-расходящейся. Число А наз пределом ф-ии у=f(x) при х→∞, если для любого сколь угодно малого положительного числа Е найдется такое положительное число М=0, что для всех х удовлетворяющих равенству |x|>M выполняется неравенство |f(x)-A|<E.При этом говорят, что A=limx→∞f(x).

б)Теорема1: Если числовая последовательность {an} монотонна и ограничена, то она имеет предел. Теорема2: Если в некоторой окрестности точки хо (или при достаточно больших значениях х) ф-ия f(x) заключена м/д двумя ф-ями φ(х) и ψ(х), имеющими одинаковый предел А при х→хо (или х→∞), то ф-ия f(x) имеет тот же предел А. Пусть при х→хо lim х→хо φ(х)=А, lim х→хо ψ(х)=А. Это означает, что для любого ε>0 найдется такое число δ>0, сто для всех х≠хо и удовлетворяющих условию |x-xo|<δ будут верны одновременно неравенства | φ(х)-А|<ε, | ψ(х)-А|<ε или А-ε< φ(х)<A+ε, A-ε< ψ(х)<A+ε. Т к по усл ф-ия f(x) заключена м/д двумя ф-ми, т е φ(х)≤ f(x) ≤ ψ(х), то из неравенства А-ε< φ(х)<A+ε, A-ε< ψ(х)<A+ε следует, что A-ε< f(х)<A+ε, т е |f(x)-A|<ε. А это и означает, что limx→хоf(x)=А.

18 а)Определение предела ф-ии в точке. б)Основные теоремы о пределах (одну доказать).

а)Число А наз пределоф ф-ии f(x) при х→хо (или в точке хо), если для любого, даже сколь угодно малого положительного числа ε>0, найдется такое положительное число δ>0 (зависящее от ε, δ=δ(ε)), что для всех х≠хо и удовлетворяющих условию |x-xo|<δ, выполняется неравенство |f(x)-A|<ε. Этот предел ф-ии обозначается limxxof(x)=A или f(x)→A при x→xо.

б) 1) Ф-ия не может иметь более одного предела. Док-во: Предположим противное, т е что ф-ия f(x) имеет два предела А и D, A≠D. Тогда на основании теоремы о связи бесконечно малых величин с пределами ф-ий в соответствии с формулой f(x)=A+α(x), f(x)=D+β(x),где α(x), β(x)- бесконечно малые при x→xo(x→∞). Вычитая почленно эти равенства, получим 0= A-D+(α(x)-β(x)), откуда α(x)-β(x)= D-А. Это равенство не возможно, т к на основании св-ва 1 бесконечно малых α(x)-β(x) есть величина бесконечно малая. Следовательно, предположение о существовании второго предела неверно. 2) Предел алгеброической суммы конечного числа ф-ии равен такой же сумме пределов этих ф-ий, т е limxxo(∞)[f(x)+φ(x)]=A+B. 3) Предел произведения конечного числа ф-ий равен произведению пределов этих ф-ий, т е limxxo(∞)[f(x)φ(x)]=AB. В частности, постоянный множитель можно выносить за знак предела, т е limxxo(∞)(сf(x))=сA. 4) Предел частного двух ф-ий равен частному пределов этих ф-ий (при условии, что предел делителя не равен нулю), т е limxxo(∞)f(x)/φ(x)=A/B (В≠0). 5) Если limuuof(u)=A, limxxoφ(x)=uo, то предел сложной ф-ии limxxof[φ(x)]=A. 6) Если в некоторой окрестности точки хо ( или при достаточно больших х) f(x)<φ(x), то limxxo(∞)f(x)≤ limxxo(∞)φ(x).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]