Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_TOE.docx
Скачиваний:
104
Добавлен:
11.02.2015
Размер:
12.87 Mб
Скачать

Основные уравнения и векторная диаграмма воздушного трансформатора

Поскольку первичная и вторичная обмотки трансформатора с параметрами соответственно R1,L1 и R2,L2 представляют собой 2 индуктивно связанные и встречно включенные катушки, уравнения Кирхгофа, составленные для цепей первичной и вторичной обмоток можно записать в следующем виде

,

где uR1, uR1- напряжения на активных сопротивлениях первичной и вторичной обмоток трансформатора, uL1, uL2- напряжения на индуктивностях первичной и вторичной обмоток, uм12- напряжение взаимоиндукции в первичной обмотке, обусловленное током вторичной обмотки, uм21- напряжение взаимоиндукции во вторичной обмотке, обусловленное током первичной обмотки, u2- напряжение на нагрузке.

Поскольку ток во вторичной обмотке обусловлен напряжением взаимоиндукции uм21, то это слагаемое во втором уравнении целесообразно перенести в левую часть и записать систему в виде

. (8.1)

Если напряжение на первичной обмотке трансформатора синусои-дально, то систему (8.1) можно записать в комплексной форме

(8.2)

Графической интерпретацией системы (8.2) является векторная диаг-рамма воздушного трансформатора, представленная на рис. 8.2.

При построении диаграммы считаются заданными векторы тока и напряжения на нагрузке ,. Данная диаграмма соответствует активно-индуктивной нагрузке. Диаграмма строится в следующем порядке:

          

Входное сопротивление трансформатора.

Вводя понятия комплексного сопротивления первичной обмотки

Z1=R1+j L1, комплексного сопротивления вторичной обмотки Z2=R2+j L2 и комплексного сопротивления нагрузки Zн, систему (8.2) запишем в виде

(8.3)

Находя из второго уравнения системы (8.3) ток 

и подставляя его в первое уравнение системы, получим

.

Из последнего выражения найдем входное сопротивление трансформатора в виде

= Z1+ Zвн.

Следовательно, входное сопротивление трансформатора можно представить суммой 2 составляющих : комплексного сопротивления соб-ственно первичной обмотки трансформатора Z1 и комплексного сопро-тивления Zвн, вносимого из вторичной цепи трансформатора в первичную. Именно изменением этой составляющей можно объяснить изменение тока первичной обмотки трансформатора с изменением его нагрузки. 

Уравнения электрического состояния воздушного трансформатора.

В силу того , что поток Ф11, создаваемый током первичной обмотки трансформатора имеет 2 составляющие, т.е. Ф11= Ф 1м1, индуктивность первичной обмотки также можно представить в виде суммы двух составляющих L1= L 1+Lм1 первая из которых обусловлена потоком рассеяния первичной обмотки и называется индуктивностью рассеяния первичной обмотки L 1, а вторая Lм1 обусловлена потоком взаимоиндукции первичной обмотки - Фм1 и определяется выражением

Lм1= Фм1w1/  1= ( 1 w1 м )w1 w2 /( 1 w2)= (w1/ w2)M.

Рассуждая аналогично, индуктивность вторичной обмотки также можно представить в виде суммы двух составляющих L2= L 2+Lм2, где

Lм2= Фм2w2/  2= ( 2 w2 м )w2 w1 /( 2 w1)= (w2/ w1)M.

С учетом сказанного систему уравнений (8.2) можно привести к следующему виду

. (8.4)

Введем понятие результирующего потока взаимоиндукции /или рабочего потока/ трансформатора. Это результирующий поток, пронизывающий как первичную, так и вторичную обмотки трансформатора. Мгновенное значение этого потока равно

Фм= Фм1- Фм2= ( 1 w1 м )- ( 2 w2 м )=  1 M/w2-  2 M/w1 ,

Следовательно, ЭДС e1 и e2, наводимые рабочим потоком транс-форматора в витках первичной и вторичной обмоток можно представить в виде

,

,

или в комплексной форме

,

.

Тогда систему уравнений электрического состояния трансформатора (8.4) можно переписать в виде

, (8.5)

Поскольку рабочий поток трансформатора синусоидален

,

то мгновенные значения ЭДС могут быть определены как

,

.

Таким образом, ЭДС e1 и e2 имеют одинаковую начальную фазу и отстают от рабочего потока на 90 эл. градусов. Действующие значения ЭДС соответственно равны

,

где - частота питающей сети Фm- амплитуда рабочего потока трансформатора.

Отношение ЭДС, наводимых рабочим потоком в витках первичной и вторичной обмоток трансформатора, называется коэффициентом трансфор-мации

.

Схема замещения трансформатора и приведение его параметров

32. Приблизить характеристики трансформатора к идеальным, как указывалось выше, можно за счет использования ферромагнитного сердечника с высокой магнитной проницаемостью. Однако магнитная проницаемость таких материалов существенно зависит от напряженности магнитного поля H. Тем не менее большинство таких трансформаторов работают в режиме, когда нелинейность их свойств мало влияет на соотношения между первичными и вторичными напряжениями и токами, которые практически сохраняют синусоидальную форму. Это позволяет использовать при анализе трансформаторов с сердечниками соотношения для линейного трансформатора, вводя в них поправочные члены.

Схемы замещения трансформаторов. Введем такие поправки в схемы замещения трансформаторов. Рассмотрим сначала совершенный трансформатор с R1 = R2 и  = 1, для которого из ранее полученных уравнений найдем связи между напряжениями и токами:

В приведенных формулах учтено, что параметры совершенного трансформатора связаны условиями c = w1/w2 = L1/M = M/L2. Второе слагаемое в выражении для тока представляет так называемый ток намагничивания , определяющий поток 0 в сердечнике (w1 0 = L1I0). Этот ток не протекает по какой-либо из обмоток трансформатора, а является лишь расчетной величиной, пропорциональной суммарной МДС обеих обмоток .

Полученным связям отвечает схема замещения, содержащая идеальный трансформатор, шунтированный со стороны первичных зажимов индуктивностью L1 (рис. 9.10, а).

Рис. 9.10

Схема замещения реального воздушного трансформатора содержит в обеих цепях активные сопротивления обмоток R1 и R2 и индуктивности рассеяния, которые через параметры исходного воздушного трансформатора определяются как разности L1 = L1 – McL 2 = L2 – M/c (рис. 9.10,  б).

Описание процессов в схемах с трансформаторами имеет более наглядный характер при приведении его обмоток к одному числу витков, т. е. при переходе к эквивалентному трансформатору с коэффициентом трансформации c' = 1. В результате из схем замещения устраняется идеальный трансформатор, однако величины, определяющие процессы в одной обмотке, должны быть соответствующим образом пересчитаны — приведены к другой обмотке. При приведении вторичной обмотки к первичной число ее витков w'2 приравнивается к w1, и все напряжения во вторичной цепи должны быть умножены на c = w1/w2, а токи — разделены на ту же величину. Сопротивления и индуктивности вторичного контура при этом умножаются на c2, а емкости — делятся на c2. Схема приведенного трансформатора изображена на рис. 9.10, в; ее приведенные параметры, обозначенные на рисунке штрихами, равны

Схема замещения трансформатора с ферромагнитным сердечником учитывает нелинейный характер связи магнитного потока в сердечнике 0 с намагничивающим током I0: индуктивный элемент L0 в намагничивающей ветви имеет нелинейный характер. Дополнительным фактором являются потери в сердечнике, связанные с гистерезисом — необратимыми потерями за счет циклического перемагничивания его материала, и циркуляцией размагничивающих вихревых токов в теле сердечника. Поскольку обе составляющие потерь в сердечнике практически пропорциональны квадрату амплитуды индукции Bm:

а Bm при периодическом процессе пропорциональна U0, для потерь в сердечнике можно записать Pф = g0 и ввести в схему замещения трансформатора активную проводимость g0, параллельную индуктивности L0. В результате получаем схемы замещения рис. 9.11, а,б.

Рис. 9.11

Последняя отвечает приведенному трансформатору. Элементы этих схем L1 и L2 (L'2) – линейные, так как магнитные потоки рассеяния замыкаются преимущественно по воздуху и практически пропорциональны вызывающим их токам. Линейной является и активная проводимость g0, поскольку составляющие потерь практически пропорциональны квадрату напряженияU0. Так как ток и его составляющая, протекающая через нелинейную индуктивность L0, существенно меньше остальных токов, то на форме первичных и вторичных токов и напряжений искажения, обусловленные нелинейностью, практически не сказываются, за исключением режима холостого хода, когда при I2 = 0 ток намагничивания I0 совпадает с первичным током. Для нахождения значений L0 и g0 используют данные измерений тока I1 и мощности P1 в режиме холостого хода при номинальном напряжении трансформатора U1. При этом с учетом записанных связей U1  U0 и P Pф.

При коротком замыкании на вторичной стороне, выполняемом при номинальном первичном токе I1, ток I0 практически отсутствует, и измеренные значения U1 и P1 позволяют определить лишь суммарную величину сопротивления R1 + R'2 и индуктивности рассеяния L1 + L'2.

Это приводит к упрощенной схеме замещения приведенного трансформатора (рис. 9.11, в).

33. Во время передачи тех или иных сигналов ток высокой частоты в антенне радиопередатчика состоит из нескольких токов различной частоты. Такой же сложный характер имеют электромагнитные волны, распространяющиеся от антенны передатчика, и токи, возникающие под действием радиоволн в приемной антенне. Для каждого вида передачи (радиотелефония, радиотелеграфия, телевизионная передача и т. д.) частоты этих токов занимают определенную полосу. При радиовещании на средних волнах она составляет примерно 9 кгц, т. е. радиовещательный передатчик создает сложный ток, состоящий из нескольких токов, у которых наиболее высокая частота на 9 кгц больше наиболее низкой частоты. Например, для радиовещательного передатчика, работающего на частоте 173 кгц (ламбда =1734 м), это будут частоты от 168,5 до 177,5 кгц. В случае служебной радиотелефонной связи полоса частот не больше 2 - 2,5 кгц, а для радиотелеграфной передачи она еще меньше. Зато при телевизионной передаче полоса частот расширяется до нескольких мегагерц. При воздействии на контур электродвижущих сил различной частоты наиболее сильные колебания получаются в случае, когда эде имеет резонансную частоту или частоту, близкую к ней. А при значительном отклонении частоты внешней эде от резонансного значения, т. е. когда контур расстроен относительно частоты внешней эде, амплитуда колебаний получается сравнительно малой. Можно сказать, что каждый контур хорошо пропускает колебания в пределах некоторой полосы частот, располагающейся по обе стороны от резонансной частоты. Ее называют полосой пропускания контура Ппр и условно определяют по резонансной кривой на уровне 0,7 от максимального значения тока или напряжения, соответствующего резонансной частоте (рис.1). 

Рис.1 - Полоса пропускания контура Иначе говоря, считают, что контур хорошо пропускает колебания тогда, когда их амплитуда уменьшается не более, чем на 30% по сравнению с амплитудой при резонансе. Полосу пропускания контура иногда называют также шириной кривой резонанса. Качество контура влияет на форму резонансной кривой. Из этого рисунка видно, что чем ниже качество контура, тем больше его полоса пропускания. Кроме того, полоса пропускания получается больше при более высокой резонансной частоте контура. Зависимость полосы пропускания контура от его затухания или добротности Q дается следующей простой формулой

Например, контур, настроенный на частоту fо = 2000 кгц и обладающий затуханием (сигма) = 0,01, имеет полосу пропускания Ппр =0,01 * 2000 = 20 кгц. Как видно, для получения узкой полосы пропускания необходимо применять контур с высокой добротностью, а для широкой полокую добротность, либо работать на весьма высокой резонансной частоте. Из приведенной формулы следует, что fo = Q * Ппp. Так как у контура среднего качества Q не менее 20, то рабочая частота должна не менее, чем в 20 раз, превышать полосу пропускания. Например, телевизионную передачу, для которой Ппр составляет несколько мегагерц, нужно вести на частотах не ниже нескольких десятков мегагерц, т.е. на ультракоротких волнах. Желательно, чтобы контур имел полосу пропускания соответствующую полосе частот, которая характерна для данного вида передачи. Если полоса пропускания меньше, то получатся искажения за счет плохого пропускания некоторых колебаний. Более широкая полоса нежелательна, так как могут быть помехи от сигналов радиостанций, работающих на соседних частотах. Если необходима широкая полоса пропускания, то приходится часто применять контуры с низкой добротностью. Добротность контура снижается, а полоса пропускания увеличивается, если параллельно контуру присоединяют активное сопротивление R, называемое шунтирующим (рис.2). Действительно, переменное напряжение U, имеющееся на контуре, приложено к сопротивлению R и создает в нем ток. Следовательно, в этом сопротивлении будет расходоваться мощность. Чем меньше сопротивление R, тем больше в нем потери мощности и тем больше затухание контура. Если сопротивление R будет очень малым, то оно замкнет накоротко один из элементов контура (конденсатор на (рис.2 а) или весь контур (рис.2 б). Тогда контур вообще не сможет работать как колебательная система и проявлять свои резонансные свойства.

Рис.1 - Шунтирование контура активным сопротивлением Шунтирование контура активным сопротивлением делают иногда специально с целью расширения полосы пропускания. Кроме того, подобное шунтирование существует вследствие того, что контур соединен с другими деталями и цепями. За счет этого происходит нежелательное ухудшение качества контура. Внутреннее сопротивление генератора, питающего параллельный контур, также влияет на добротность контура и его поласу пропускания. Это можно легко объяснить следующим образом. Пусть генератор в какой-то момент прекратил свое действие. Тогда колебания в контуре станут затухать, а внутреннее сопротивление генератора, присоединенного к контуру, будет играть роль шунтирующего сопротивления, увеличивающего затухание. Чем больше Ri генератора, тем слабее его влияние, а значит, кривая резонанса контура острее и его полоса пропускания меньше, т.е. резонансные свойства контура выражены резче. При малом Ri генератора добротность контура настолько снижается и полоса пропускания становится такой широкой, что резонансные свойства у контура практически отсутствуют.

34.

35.

36.

37.

38.

39.

40.Многофазной системой электрических цепей называют совокупность электрических цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые относительно друг друга по фазе и создаваемые общим источником электрической энергии. Отдельные электрические цепи, входящие в состав многофазной электрической цепи, называются фазами. Число фаз многофазной системы цепей будет обозначаться через m.

41. Из практики известно, что при запуске электродвигателя с короткозамкнутым ротором первоначальный (пусковой) ток превышает номинальный примерно в шесть раз. Если включается электродвигатель большой мощности, его пусковой ток так велик, что способен вызвать отключение защиты, перегорание предохранителей и «проседание» напряжения. Это, в свою очередь, ведёт к уменьшению вращающего момента двигателя, может вызвать выключение магнитных пускателей и контакторов, снизить уровень освещённости рабочего места.

Для предупреждения этих последствий на производстве всегда стремятся снизить пусковой ток электродвигателей. Существует несколько способов уменьшения первоначального тока и, соответственно, напряжения на обмотках статора в момент пуска. Для реализации этого в цепь статора временно (на срок пуска) включают дроссель, реостат, автотрансформатор или переключают схему присоединения обмоток. Сначала обмотки статора включены по схеме «звезда», после того как двигатель выйдет на номинальные обороты, обмотку переключают на схему «треугольник».

Различие в присоединении электродвигателя по указанным схемам состоит в соединении концов обмоток. В схеме «звезда», все окончания обмоток соединяются вместе, а в схеме «треугольник» завершение одной с началом следующей. При соединении по первой схеме («звезда») питание подаётся на начала обмоток статора, а при второй – на места соединения разных обмоток между собой. При соединении звездой к точке соединения всех концов обмоток рекомендуется присоединять нейтраль источника питания. Это делается для компенсации возможной асимметрии амплитуды различных питающих фаз, которая может быть из-за разного индуктивного сопротивления каждой из обмоток.

При подключении электродвигателя в режиме «звезды» отмечены следующие преимущества: - плавность запуска и спокойная работа привода; - возможность получения от двигателя номинальной мощности, величина которой приведена в паспорте изделия; - нормальная работоспособность при кратковременных значительных ил частых незначительных перегрузках; - небольшой прогрев корпуса при функционировании. При соединении «треугольником» достоинством является достижение максимальной мощности электродвигателя. При этом необходимо строго соблюдать эксплуатационный режим, указанный в паспорте. Расчёты показывают, что двигатель располагает в полтора-три раза большей мощностью при подключении его по схеме «треугольник». Из этих же подсчётов следует, что при подключении генератора по схеме «звезда», выдаваемое в сеть напряжение выше в 1,73 раза величины напряжения, получаемого при соединении обмоток генератора по схеме «треугольник». Например, 380 и 220 вольт. При этом мощность генератора остаётся неизменной, так как вместе с напряжением обратно пропорционально изменяется и ток (уменьшается в 1,73 раза). Поэтому генераторы при наличии в коробке шести концов, могут быть использованы для производства двух номиналов напряжений (отличающихся друг от друга в 1,73 раза).

42. Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах. 

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являютсянесимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной –базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

 ,

где определяется характером нагрузки.

Тогда на основании вышесказанного

 ; 

 .

 

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

 ; ;.

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

 .

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b.

Тогда

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

43.

44.

45.

46.

47.

48. Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

 Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е..

 Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е..

 Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е..

Действующее значение периодической несинусоидальной переменной

Как было показано выше, действующим называется среднеквадратичное за период значение величины:

.При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о  действующих значениях конечного ряда гармонических.

Пусть . Тогда

Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,

или

.

Аналогичные выражения имеют место для ЭДС, напряжения и т.д.

49.

50.

51.

52.

53. Методика расчета линейных цепей при периодических

несинусоидальных токах

Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС

(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.

Здесь .

Тогда, например, для тока в ветви с источником ЭДС, имеем

,

где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры и С постоянны.

;

.

Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.

Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:

  1. ЭДС и токи источников раскладываются в ряды Фурье.

  2. Осуществляется расчет цепи в отдельности для каждой гармонической.

  3. Искомые величины определяются как алгебраические суммы соответствующих гармонических.

54. Рассмотрим симметричную систему трехфазных несинусоидальных величин (ЭДС, напряжений или токов), имеющих одинаковую форму во всех трех фазах и сдвинутых относительно друг друга на 1/3 периода первой гармоники. Такие кривые содержат во всех трех фазах одинаковые по амплитуде гармоники, однако фазовые сдвиги между гармониками фаз будут различны. Действительно, поскольку период 3-й гармоники в три раза меньше периода 1-й гармоники, то составляющие 3-й гармоники в отдельных фазах совпадают по фазе или образуют систему нулевой последовательности. То же относится и ко всем остальным гармоникам, порядок которых k кратен трем (k = 3n; n — целое число; k = 6, 9, 12, 15,...). Аналогично гармоники с k = 2, 5, 8,... = 3п – 1 (п— целое число) образуют симметричные системы обратной последовательности, а гармоники порядка k = 1, 4, 7, 10,... = 3n + l (п — целое число) — системы прямой последовательности. Это определяет особый характер действия гармоник различного порядка в трехфазных цепях.

Так, при соединении фаз источника звездой (см. рис. 10.2) линейное напряжение не содержит гармоник, кратных трем, так как эти гармоники, имеющиеся в фазных напряжениях, при вычитании компенсируются. В результате фазные и линейные напряжения имеют различную форму, и соотношение Uл/Uф 3 выполняется лишь для гармоник, не кратных трем. Поэтому для действующих значений Uл/Uф <3, так как в линейных напряжениях гармоники, кратные трем, отсутствуют.

При соединении фаз источника и приемника звездой ток в нейтральном проводе будет протекать даже при полной симметрии несинусоидальных фазных напряжений и фаз приемника. Этот ток будет обусловлен совпадающими по фазе составляющими токов в приемнике, порядок которых равен трем. При отсутствии нейтрального провода в фазах приемника не могут протекать токи этих гармоник, так как они отсутствуют в линейных напряжениях. Если при этом фазы приемника соединены звездой, то между нейтралями источника и приемника возникает напряжение, обусловленное гармониками, кратными трем, содержащимися в фазных напряжениях источника.

При соединении фаз источника треугольником составляющие фазных ЭДС в контуре треугольника суммируются. За счет совпадения по фазе составляющих с k = 3n их сумма отлична от нуля. Это приводит к появлению тока в контуре треугольника, порядок составляющих которого равен трем. Падения напряжения на каждой фазе, обусловленные этими токами, равны вызвавшим их ЭДС, и фазные напряжения обмоток не содержат гармоник, кратных трем. Поэтому во внешних цепях, питаемых от источника с соединением фаз треугольником, гармоники, кратные трем, будут отсутствовать. Такое соединение фаз источника и применяется в энергетических системах, где оно позволяет исключить гармоники, кратные трем, и тем самым приблизить формы кривых напряжений и токов к синусоидальным.

55.

56.

57. Перейдем к рассмотрению переходных процессов в цепи с последовательным соединением резистора R и емкости C. По второму закону Кирхгофа для этой цепи

Ri + uC = u.

Ток в емкости можно представить в виде i = CduC/dt. Отсюда

.

Решение этого дифференциального уравнения для напряжения на емкости также можно представить суммой свободной и установившейся составляющих uC = uу + uс. Свободную составляющую найдем из решения однородного уравнения (u = 0) в виде uс = Uept. Подставим это выражение в уравнение и найдем значение p

Выражение RCp + 1 = 0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных от напряжения на емкости на pk, где k - порядок производной.

Отсюда общее решение для напряжения на емкости

uC = uу + uсuу + Ue t/ ,

(8)

где U - постоянная интегрирования, определяемая из начальных значений;  = 1/|p| = RC - постоянная времени переходного процесса.

Рассмотрим процесс подключения последовательной R-C цепи к источнику постоянной ЭДС E (рис. 5 а)).

В отличие от индуктивности, емкость после накопления заряда может длительное время сохранять его. Поэтому начальное значение напряжения на емкости U0 может быть произвольным и иметь произвольный знак по отношению к ЭДС источника.

Установившееся значение напряжения на емкости после замыкания ключа S всегда будет равно E, т.к. на постоянном токе в установившемся режиме duC/dt = 0 и i = CduC/dt = 0, а uC = u  Ri = E  Ri = E. Поэтому из выражения (8) напряжение на емкости в общем виде будет равно

uC = uу + uсE + Ue t/ .

(9)

Пусть напряжение на емкости до коммутации было uC(0 ) =  U0 (знак + соответствует полярности напряжения на рис. 5 а) без скобок). Тогда из (9) для момента времени непосредственно после замыкания ключа найдем постоянную U

,

а затем и выражение для напряжения на емкости в виде

,

(10)

где  = RC - постоянная времени переходного процесса.

Отсюда можно найти ток в цепи и падение напряжения на резисторе

.

(11)

На рис. 5 б)-г) приведены временные диаграммы переходного процесса подключения R-C цепи к источнику постоянной ЭДС для трех вариантов начальных значений напряжения на емкости: 1) E > U> 0 ; 2) E < Uи U> 0; 3) U< 0 Во всех случаях напряжение на емкости монотонно по экспоненте изменяется отUдо E. В то время как ток и напряжение на резисторе в момент коммутации скачкообразно изменяются на величину пропорциональную разности или сумме E и U0, а затем монотонно уменьшаются до нуля. При этом, если E < U0, то ток и падение напряжения на R отрицательны, т.е. происходит разряд емкости.

Полный разряд емкости происходит при отсутствии внешних источников энергии (рис. 1 а)). После переключения ключа S вся энергия накопленная в электрическом поле емкости C преобразуется в тепло в резисторе R.

Напряжение на емкости в переходном процессе будет иметь только свободную составляющую

uC = uсUe t/

и если цепь достаточно длительное время была подключена к источнику, то в момент переключения напряжение на емкости будет равноE. Поэтому постоянная U будет равна

uC(0 ) = uC(0+) = U,

а напряжение на емкости в переходном процессе -

uC = Ee t/ .

(12)

Отсюда ток в цепи и напряжение на резисторе

.

(13)

58. Рассмотрим переходные процессы в цепи, содержащей последовательно соединенные резистор R и индуктивность L . Уравнение Кирхгофа для такой цепи

,

где u = u(t) - напряжение на входе цепи. Найдем решение этого уравнения для свободной составляющей тока, т.е. при u = 0, в виде iс = Iept . Для этого подставим выражение для тока в исходное уравнение и найдем значение p

.

Выражение Lp R=0 представляет собой характеристическое уравнение, которое могло быть получено без подстановки общего выражения для свободной составляющей формальной заменой в однородном дифференциальном уравнении производных тока на pk, где k - порядок производной.

Таким образом, общее решение для тока при переходном процессе в R-L цепи можно представить в виде

(1)

где  = 1/|p| = L/R - постоянная времени переходного процесса; I - постоянная интегрирования, определяемая по начальным значениям; i - установившийся ток в цепи, определяемый по параметрам R и L и напряжению на входе u.

Длительность переходного процесса в цепи, определяемая значением  , возрастает с увеличением L и уменьшением R.

Рассмотрим подключение R-L цепи к источнику постоянной ЭДС E (рис. 1 а)).

Установившийся ток в этой цепи будет определяться только ЭДС E и резистивным сопротивлением R, т.к. после окончания переходного процессаi = const и uL = Ldi/dt = 0, т.е. iу = E/R .

Полный ток в переходном процессе из выражения (1)

.

Для определения постоянной I найдем начальное тока. До замыкания ключа ток очевидно был нулевым, а т.к. подключаемая цепь содержит индуктивность, ток в которой не может измениться скачкообразно, то в первый момент после коммутации ток останется нулевым. Отсюда

.

Подставляя найденное значение постоянной I в выражение для тока, получим

.

(2)

Из этого выражения можно определить падения напряжения на резисторе uR и индуктивности uL

(3)

Из выражений (1)-(3) следует, что ток в цепи нарастает по экспоненте с постоянной времени  = L/R от нулевого до значения E/R (рис. 1 б)). Падение напряжения на сопротивлении uR повторяет кривую тока в измененном масштабе. Напряжение на индуктивности uL в момент коммутации скачкообразно возрастает от нуля до E , а затем снижается до нуля по экспоненте (рис. 1 б)).

Подставляя выражения (3) в уравнение Кирхгофа для цепи после коммутации, можно убедиться в его справедливости в любой момент времени

.

Пусть рассмотренная выше R-L цепь длительное время была подключена к источнику ЭДС E, а затем замкнута накоротко (рис. 2 а)).

В этом случае установившийся ток будет равен нулю и задача сводится к отысканию его свободной составляющей. Из выражения (1)

.

Постоянную I можно определить из начальных условий. Установившийся ток в цепи до переключения ключа S был равен i(0 ) = E/R, а т.к. в первый момент после коммутации ток в индуктивности сохраняет свое значение, то i(0 ) =i(0+) = I = E/R . Отсюда ток и падения напряжения в цепи

(4)

Из выражений (4) следует, что при замыкании цепи накоротко ток уменьшается от E/R до нуля по экспоненте с постоянной времени  = L/R (рис. 2 б)). Падение напряжения на резисторе изменяется по такому же закону, а напряжение на индуктивности в момент коммутации скачком изменяется от нуля до  E, а затем снижается до нуля ( рис. 2б)).

Общее падение напряжения на резисторе и индуктивности в любой момент времени

,

как и следовало ожидать, равно нулю и в переходном процессе происходит преобразование энергии магнитного поля в тепло.

При отключении цепи содержащей индуктивность в ней могут возникать падения напряжений опасные для ее элементов. Пусть R-L цепь с подключенным к ней вольтметром отключается от источника постоянной ЭДС E (рис. 3).

Так как цепь содержит индуктивность, то после размыкания ключа S ток не сможет изменить своего значения и будет

59. Апериодический переходный процесс - это форма переходного процесса, реакция системы на воздействие в виде монотонного (без периодических колебаний) перехода системы либо к прежнему уровню равновесия (например послеимпульсного воздействия), либо к новому уровню равновесия (например после ступенчатого воздействия).       Любой переходный процесс представляет собой выход системы из равновесия, достижение определенного максимального отклонения от уровня равновесия, а затем восстанавление равновесия, возвращение системы либо к прежнему уровню (например после импульсного воздействия), либо к новому уровню (например после ступенчатого воздействия). Эта последовательность этапов может осуществляться либо в форме затухающих периодических колебаний, либо без колебаний. В первом случае говорят о колебательном переходном процессе, а во втором - об апериодическом переходном процессе.       Большинство переходных процессов в системах организма являются колебательными (затухающими) переходными процессами.       Примеры: потенциал действия возбудимой ткани, вызванные электрические ответы различных структур мозга, вызванныеэлектромиографические ответы, сократительные реакции фазических мышц на любое импульсное физическое воздействие.       Однако, в системах организма нередки и апериодические переходные процессы. Например, апериодические процессы можно наблюдать при исследовании ответов тонических мышц на импульсное или ступенчатое воздействие, при исследовании некоторых нераспространяющихся электрических переходных процессов деполяризации/гиперполяризации возбудимых структур, некоторых электротонических процессов на мембранах клеток.       Параметры распределения, характеризующие апериодический переходный процесс, либо монотонно стремятся к исходномузначению, либо имеют один экстремум. Апериодический процесс может длиться значительное время. Вероятно, апериодический процесс развивается из-за больших потерь энергии, из-за невозможности осуществления колебательного переходного процесса.

Схема 1. Реакция биосистемы на внешнее воздействие (единичный импульс).

60. Методы составления характеристического уравнения. Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).Характеристическое уравнение можно составить различными методами. Первый метод – классический, когда характеристическое уравнение составляется строго в соответствии с дифференциальным по классической схеме. При расчете переходных процессов в сложной схеме составляется система из “m” дифференциальных уравнений по законам Кирхгофа для схемы цепи после коммутации. Так как корни характеристического уравнения являются общими для всех переменных, то решение системы дифференциальных уравнений выполняется относительно любой переменной (по выбору). В результате решения получают неоднородное дифференциальное уравнение с одной переменной. Составляют характеристическое уравнение в соответствии с полученным дифференциальным и определяют его корни. Пример. Составить характеристическое уравнение и определить его корни для переменных в схеме рис. 131. Параметры элементов заданы в общем виде.

Система дифференциальных уравнений по законам Кирхгофа:

Решим систему уравнений относительно переменной i3, в результате получим неоднородное дифференциальное уравнение:

Характеристическое уравнение и его корень:

[c-1]

Второй способ составления характеристического уравнения заключается в приравнивании нулю главного определителя системы уравнений Кирхгофа для свободных составляющих переменных.

Пусть свободная составляющая произвольного тока имеет вид , тогда

Система уравнений для свободных составляющих получается из системы дифференциальных уравнений Кирхгофа путем замены производных от переменных на множитель р, а интегралов – на 1/р. Для рассматриваемого примера система уравнений для свободных составляющих имеет вид:

Характеристическое уравнение и его корень:

Третий способ составления характеристического уравнения (инженерный) заключается в приравнивании нулю входного операторного сопротивления схемы относительно любой ее ветви.

Операторное сопротивление элемента получается из его комплексного сопротивления путем простой замены множителя jω на р, следовательно

Для рассматриваемого примера:

;

;

.

Третий способ является наиболее простым и экономичным, поэтому он чаще других применяется при расчете переходных процессов в электрических цепях.

Корни характеристического уравнения характеризуют свободный переходной процесс в схеме без источников энергии. Такой процесс протекает с потерями энергии и поэтому затухает во времени. Из этого следует, что корни характеристического уравнения должны быть отрицательными или иметь отрицательную вещественную часть.В общем случае порядок дифференциального уравнения, которым описывается переходный процесс в схеме, и, следовательно, степень характеристического уравнения и число его корней равны числу независимых начальных условий, или числу независимых накопителей энергии (катушек L и конденсаторов C). Если в схеме цепи содержатся параллельно включенные конденсаторы С1, С2,… или последовательно включенные катушки L1, L2,…, то при расчете переходных процессов они должны быть заменены одним эквивалентным элементом СЭ =С1 +С2+… или LЭ =L1 +L2+…Таким образом, общий вид решения для любой переменной при расчете переходного процесса может быть составлен только из анализа схемы цепи, без составления и решения системы дифференциальных уравнений. Для рассматриваемого выше примера:

а)– при e(t)=E=const;

б)  – при e(t)=Emsin(ωt+).

При согласном включении токи в обоих элементах в любой момент времени направлены одинаково относительно одноименных выводов, поэтому магнитные потоки самоиндукции Ф11 (или Ф22) и взаимной индукции Ф12 (или Ф21), сцепленные с каждым элементом, складываются. При встречном включении токи в обоих элементах цепи в любой момент времени направлены противоположно относительно одноименных выводов, поэтому магнитные потоки самоиндукции и взаимной индукции, сцепленные с каждым элементом, вычитаются. Индуктивность двух последовательно соединенных индуктивно связанных элементов определяется выражением

61.Метод переменных состояния

Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи.

Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники.

Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии.

К уравнениям состояния выдвигаются два основных требования:

-независимость уравнений;

-возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных.

Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее.

Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других.

При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные ис самими переменнымиии источниками внешних воздействий – ЭДС и тока, необходимо составить систему алгебраических уравнений, связывающих искомые величины с переменными состояния и источниками внешних воздействий.

Таким образом, полная система уравнений в матричной форме записи имеет вид

;

(2)

.

(3)

Здесь и- столбцовые матрицы соответственно переменных состояния и их первых производных по времени;- матрица-столбец источников внешних воздействий;- столбцовая матрица выходных (искомых) величин;- квадратная размерностью n x n (где n – число переменных состояния) матрица параметров, называемая матрицей Якоби; - прямоугольная матрица связи между источниками и переменными состояния (количество строк равно n, а столбцов – числу источников m);- прямоугольная матрица связи переменных состояния с искомыми величинами (количество строк равно числу искомых величин к, а столбцов – n);- прямоугольная размерностьюк x mматрица связи входа с выходом.

Начальные условия для уравнения (2) задаются вектором начальных значений (0).

В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4,а, в которой требуется определить токи и.

По законам Кирхгофа для данной цепи запишем

;

(4)

;

(5)

.

(6)

Поскольку с учетом соотношения (6) перепишем уравнения (4) и (5) в виде

или в матричной форме записи

.

А

В

Матричное уравнение вида (3) вытекает из соотношений (4) и (6):

.

Вектор начальных значений (0)=.

Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния. Методика составления уравнений состояния

Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.

В рассматриваемом случае (равенство тривиально),

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5).

Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

62.

63.

64.

65.

66.

67.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]