Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
5
Добавлен:
20.04.2023
Размер:
2.42 Mб
Скачать

провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Первой поколение ЭВМ (1945-1954)

Чтобы упростить и убыстрить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т.е. универсальных вычислительных устройств.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ.

И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом.

В Европе первый компьютер был создан в 1947 г. в Великобритании. В Советском Союзе первая ЭВМ МЭСМ (малая электронная счетная машина) была создана в 194648 г.г. коллективом ученых, возглавляемых академиком Сергеем Алексеевичем Лебедевым в Киеве.

Компьютеры первого поколения занимали огромные площади, потребляли очень много энергии, были ужасно дороги в эксплуатации. Поэтому эти инструменты были мало доступны и применялись для решения государственных, промышленных и научных задач.

Принципы Джона Фон Неймана

1. Использование двоичной системы представления данных

Нейман убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. Сегодня ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных попрежнему составляет информационную основу любого современного компьютера.

2. Принцип хранимой программы

Нейман первым догадался, что программа может храниться в виде нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

3. Принцип последовательного выполнения операций

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

4. Принцип произвольного доступа к ячейкам оперативной памяти

Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Второе поколение ЭВМ (1955-1964)

71

В 40-х и 50-х годах компьютеры создавались на основе электронных ламп. Поэтому были очень большими (занимали огромные залы), дорогими и ненадежными — ведь электронные лампы, как и обычные лампочки, часто перегорают.

Но в 1948 г. были изобретены транзисторы — миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности. Первые компьютеры на основе транзисторов появились в конце 50-х годов.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризировали свою бухгалтерию, предвосхищая моду на двадцать лет.

Третье поколение ЭВМ (1965-1974)

После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами.

В1968 г. был выпущен первый компьютер на интегральных схемах.

Вэти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных

идорогих моделей.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов.

Количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой персонального компьютера.

Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 г. одновременно появились операционная система Unix и язык программирования Си, оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Появление персональных компьютеров

В 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel персонального компьютера, т.е. устройства, выполняющего те же функции, что и большой

72

компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel. Этот компьютер продавался по цене около 500 дол. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами.

Успех Альтаир заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например, программа для редактирования текстов. Все эти сделало покупку персональных компьютеров весьма выгодным для бизнеса. Использование же больших компьютеров для этих целей было слишком дорого.

Появление IBM PC

Вконце 70-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM — ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент — что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

Вавгусте 1981 г. новый компьютер под названием IBM PC (читается — Ай-Би-Эм Пи-Си) был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей.

Фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров:

1. Перспективность и популярность IBM PC сделала весьма привлекательным производство различных комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств.

2. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на

73

исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2-3 раза) аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры вначале стали презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PCсовместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. 3.

Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей.

Все это привело к удешевлению IBM PC-совместимых компьютеров и стремительному улучшению их характеристик, а значит, к росту их популярности.

Четвертое поколение ЭВМ К сожалению, дальше стройная картина смены поколений нарушается. Обычно

считается, что период с 1975 по 1985 гг. принадлежит компьютерам четвертого поколения. Однако есть и другое мнение - многие полагают, что достижения этого периода не настолько велики, чтобы считать его равноправным поколением.

Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

И, конечно же, самое главное - что с начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Классификация по элементной базе

Существует множество классификаций компьютеров, а самой распространенной является классификация по элементной базе. Именно изменения в элементной базе влекут изменение наиболее критической характеристики компьютеров - их быстродействия, т.е. количество операций в секундах, которые выполняет компьютер.

Классификация ЭВМ по назначению

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженернотехнических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

74

Специализированные ЭВМ используются для решения конкретных задач, в частности, бортовые компьютеры в самолетах и автомобилях.

Классификация ЭВМ по размерам

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).

СуперЭВМ. К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду. Объемом оперативной памяти 2000-10000 Мб.

В настоящее время в мире насчитывается несколько тысяч суперЭВМ (в 1991 г.-

900 шт.).

Большие ЭВМ. Большие ЭВМ за рубежом чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят компьютеры с производительностью от 10 до 100 миллионов операций в секунду. Объем оперативной памяти 64-10000 Мб.

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа с большими базами данных, управление вычислительными сетями и их ресурсами.

Малые ЭВМ. Малые ЭВМ (миниЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями. К миниЭВМ относятся компьютеры с производительностью до 100 миллионов операций в секунду. Объем оперативной памяти

4-512 Мб.

Мини-ЭВМ используется для управления технологическими процессами, для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

МикроЭВМ. К микроЭВМ относятся компьютеры с производительностью до 100 миллионов операций в секунду. Объем оперативной памяти 4-256 Мб.

Многопользовательские микроЭВМ - это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.

75

Персональные компьютеры - однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Рабочие станции - представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).

Серверы - многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Серверы

Серверы обычно относят к микроЭВМ, но по своим характеристикам мощные серверы скорее можно отнести к малым ЭВМ и даже к мэйнфреймам, а суперсерверы приближаются к суперЭВМ.

Сервер - выделенный для обработки запросов от всех станций вычислительной сети компьютер, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы. Такой универсальный сервер часто называют сервером приложений.

Специализированные серверы используются для устранения наиболее "узких" мест в работе сети: создание и управление базами данных и архивами данных, поддержка многоадресной факсимильной связи и электронной почты, управление многопользовательскими терминалами (принтеры, плоттеры) и др.

Файл-сервер используется для работы с файлами данных, имеет объемные дисковые запоминающие устройства.

Архивационный сервер (сервер резервного копирования) служит для резервного копирования информации в крупных сетях, обычно выполняет ежедневное автоматическое архивирование со сжатием, информации от серверов и рабочих станций по сценарию, заданному администратором сети (естественно, с составлением каталога архива).

Почтовый сервер – сервер для организации электронной почты, с электронными почтовыми ящиками.

Сервер печати предназначен для эффективного использования системных принтеров.

Персональные компьютеры

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

автономность эксплуатации без специальных требований к условиям окружающей

среды;

гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

"дружественность" операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

высокую надежность работы (более 5000 ч наработки на отказ).

За рубежом распространенными моделями компьютеров в настоящее время являются IВМ РС с микропроцессорами Рentium и Pentium Pro.

Персональные компьютеры можно классифицировать по ряду признаков. Классификация ПК по конструктивным особенностям

76

Переносные компьютеры

Большинство переносных компьютеров имеют автономное питание от аккумуляторов, но могут подключаться и к сети.

В качестве видеомониторов у них применяются плоские жидкокристаллические дисплеи.

Клавиатура чаще всего чуть укороченная: 84-86 клавиш (вместо 101 у настольных ПК), но может иметься разъем для подключения и полной клавиатуры; у некоторых моделей клавиатура раскладная.

Переносные компьютеры весьма разнообразны: от громоздких и тяжелых (до 15 кг) портативных рабочих станций до миниатюрных электронных записных книжек массой около 100 г.

Портативные компьютеры - наиболее мощные и крупные переносные ПК. Они оформляются часто в виде чемодана. Их характеристики аналогичны характеристикам стационарных ПК - рабочих станций: мощные микропроцессоры, оперативная память емкостью до 64 Мбайт, гигабайтные дисковые накопители и т.д.

По существу, это обычные рабочие станции, питающиеся от сети, но конструктивно оформленные в корпусе, удобном для переноса, и имеющие, как и все переносные ПК, плоский жидкокристаллический видеомонитор. Обычно имеют модемы и могут оперативно подключаться к каналам связи для работы в вычислительной сети.

Этот тип переносных компьютеров может эффективно использоваться для выездных презентаций, но может с успехом применяться и в стационарном варианте, позволяя экономить место на рабочем столе.

Компьютеры-блокноты выполняют все функции настольных ПК. Конструктивно они оформлены в виде миниатюрного чемоданчика (иногда со съемной крышкой) размером с небольшую книгу. По своим характеристикам во многом совпадают с портативными компьютерами, отличаясь от них лишь размерами и несколько меньшими объемами оперативной и дисковой памяти. Питание осуществляется от портативных аккумуляторов, обеспечивающих автономную работу в течение 3 -4 ч.

Карманные компьютеры имеют массу около 300 г. Это полноправные персональные компьютеры, имеющие микропроцессор, оперативную и постоянную память, обычно монохромный жидкокристаллический дисплей, портативную клавиатуру, порт - разъем для подключения в целях обмена информацией к стационарному ПК.

77

Электронные секретари имеют формат карманного компьютера (массой не более 0,5 кг), но более широкие функциональные возможности, нежели карманный компьютер, например, встроенные текстовые, а иногда и графические редакторы, электронные таблицы.

Электронные записные книжки имеют массу не более 200 г. Органайзеры пользователем не программируются, но содержат вместительную память, в которую можно записать необходимую информацию и отредактировать ее с помощью встроенного текстового редактора; в памяти можно хранить деловые письма, тексты соглашений, контрактов, распорядок и деловых встреч. В органайзер встроен внутренний таймер, который напоминает звуком о деле в заданное время. Есть защита информации от несанкционированного доступа, обычно по паролю.

Тенденции развития вычислительных систем

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их система - вычислительным системам и комплексам.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) значительно снизятся и уступят место и компьютерным сетам.

Уже сегодня пользователям глобальной вычислительной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация. Можно почитать или посмотреть, например, любую из нескольких сотен религиозных книг, рукописей, или картин в библиотеке Ватикана, оформленных в виде файлов, послушать музыку в Карнеги Холл, "заглянуть" в галереи Лувра или в кабинет президента США в Белом доме; пользователи этой суперсети могут получить для изучения интересующую их статью или подборку статей по нужной тематике, "опубликовать" в сети свою новую работу, обсудить ее с заинтересованными специалистами.

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры - суперЭВМ и миниатюрные, и сверхминиатюрные ПК.

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

78

Информационная революция затронет все стороны жизнедеятельности, появятся системы, создающие виртуальную реальность:

компьютерные системы - при работе на ЭВМ с "дружественным интерфейсом" абоненты по видеоканалу будут видеть виртуального собеседника, активно общаться с ним на естественном речевом уровне с аудио- и видео разъяснениями, советами, подсказками. "Компьютерное одиночество", так вредно влияющее на психику активных пользователей ЭВМ, исчезнет;

системы автоматизированного обучения - при наличии обратной видеосвязи абонент будет общаться с персональным виртуальным учителем, учитывающим психологию, подготовленность, восприимчивость ученика;

торговля - любой товар будет сопровождаться не магнитным кодом, нанесенным на торговый ярлык, а активной компьютерной табличкой, дистанционно общающейся с потенциальным покупателем и сообщающей всю необходимую ему информацию - что, где, когда, как, сколько и почем.

И так далее, и тому подобное.

Многие предпосылки для создания указанных компонентов, да и простейшие их прообразы уже существуют.

Но есть и проблемы. Важнейшая из них - обеспечение прав интеллектуальной собственности и конфиденциальности информации, чтобы личная жизнь каждого из нас не стала всеобщим достоянием.

Тема. Архитектура современного ПК

Компьютер - это устройство, предназначенное для обработки различных видов информации. Компьютеры позволяют проводить без участия человека сложные последовательности вычислительных операций по заранее заданной инструкции – программе.

Архитектура компьютера определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины.

Структура компьютера - это некоторая модель, устанавливающая состав, порядок

ипринципы взаимодействия входящих в нее компонентов.

Воснову устройства компьютера положены принципы Джона фон Неймана. Согласно этим принципам компьютер должен иметь следующие устройства:

арифметико-логическое устройство (АЛУ), выполняющее арифметические и

логические операции; устройства управления (УУ),

организующие процесс выполнения программ;

оперативно - запоминающее устройство ОЗУ (оперативная память - ОП), предназначенное для хранения команд (программ) и данных;

внешние (периферийные) устройства (ВУ), предназначенное для ввода/вывода информации.

На приведенной слева схеме двойными линиями обозначены потоки передачи информации, а одинарными – каналы передачи команд управления.

79

Принцип работы компьютера

С помощью какого-либо ВУ в память компьютера вводится программа. УУ считывает содержимое ячеек памяти, где находится первая команда программы, и организует ее выполнение. Эта команда может задавать ввод или вывод данных с ВУ в память или, наоборот, из памяти на ВУ, выполнение арифметических (сложение, вычитание, деление, умножение) или логических операций.

После выполнения первой команды УУ начинает выполнять вторую, которая находится в ячейке памяти компьютера, расположенной сразу за ячейкой с первой командой и т.д. Однако последовательность выполнения команд может быть изменена с помощью команд передачи управления (перехода). Эти команды указывают УУ, что необходимо продолжить выполнение программы, начиная с команды, содержащейся в другой ячейке памяти. Такой переход может выполняться не всегда, а лишь при выполнении определенных условий. Например, если одно число больше другого (логическая операция). Это позволяет использовать одни и те же команды несколько раз, выполнять различные последовательности команд в зависимости от выполнения определенных условий.

Таким образом, УУ выполняет инструкции автоматически, без вмешательства человека. УУ может обмениваться информацией с ОП и ВУ компьютера. Поскольку ВУ, как правило, работают значительно медленнее, чем остальные части компьютера, УУ может приостанавливать выполнение программы до завершения операции ввода – вывода с ВУ.

Устройство современного компьютера

Воснову устройства компьютера положен принцип открытой архитектуры, т.е. возможность подключения к системе дополнительных независимо разработанных устройств для различных прикладных применений. Все устройства подключаются к системе и взаимодействуют друг с другом через общую шину.

Всостав компьютер входят следующие компоненты:

Системный блок Монитор Клавиатура

Периферийные устройства.

Системный блок Конструктивно системный блок может быть выполнен в горизонтальном или

вертикальном исполнении.

В корпусе системного блока компьютера находится: блок питания

материнская плата, в которую вставлены платы размером поменьше – контроллеры устройства внешней памяти - накопители на гибких магнитных дисках; накопители

на магнитных (жестких) дисках; приводы CD-R.

Внутри корпуса есть также маленький громкоговоритель и много соединительных кабелей.

80

Соседние файлы в папке из электронной библиотеки