Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
3
Добавлен:
20.04.2023
Размер:
2.47 Mб
Скачать

высказывание у — следствием, или заключением, а высказывание х у — следованием, или импликацией.

X

У

х у

 

 

 

1

1

1

 

 

 

1

0

0

 

 

 

0

1

1

 

 

 

0

0

1

 

 

 

Употребление слов «если..., то...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что если высказыванием ложно, то высказывание «Если х, то у» не имеет смысла. Кроме того, строя предложение «Если х, то у», мы всегда подразумеваем, что предложение у вытекает из предложения х. Употребление слов «если..., то...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.

Операция эквивалентности высказываний х и у обозначается символом « -», а выражение х у читается «для того чтобы х, необходимо и достаточно, чтобы у» или «х тогда и только тогда, когда у». Высказывания х и у называются членами эквивалентности.

 

X

 

У

х у

 

 

 

 

 

1

 

1

 

1

 

 

 

 

 

1

 

0

 

0

 

 

 

 

 

0

 

1

 

0

 

 

 

 

 

0

 

0

 

1

 

 

 

 

 

В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (эквивалентные) преобразования логических выражений. Преобразования называются равносильными, если истинные значения исходной и полученной после преобразования логической функции совпадают при любых значениях входящих в них логических переменных.

Для простоты записи приведем основные законы алгебры логики для двух логических переменных А и В. Эти законы распространяются и на другие логические переменные.

1.Закон противоречия:

2.Закон исключенного третьего:

3.Закон двойного отрицания:

4.Законы де Моргана:

5.Законы повторения: A & A = A; A v A = A; В & В = В; В v В = В.

6.Законы поглощения: A (A & B) = A; A & (A B) = A.

7.Законы исключения констант: A 1 = 1; A 0 = A; A & 1 = A; A & 0 = 0; B 1 = 1; B 0 = B; B & 1 = B; B & 0 = 0.

8.Законы склеивания:

71

9. Закон контрапозиции: (A B) = (B A).

Для логических переменных справедливы и общематематические законы. Для простоты записи приведем общематематические законы для трех логических переменных

A, В и С:

1.Коммутативный закон: A & B = B & A; A B = B A.

2.Ассоциативный закон: A & (B & C) = (A & B) & C; A (B C) = (A B) C.

3.Дистрибутивный закон: A & (B C) = (A & B) (A & C).

Как уже отмечалось, с помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций: первыми выполняются операции в скобках, затем в следующем порядке: инверсия (отрицание), конъюнкция ( & ), дизъюнкция (v), импликация, эквиваленция

Выполним преобразование, например, логической функции

применив соответствующие законы алгебры логики.

Среди технических средств автоматизации значительное место занимают устройства релейно-контактного действия. Они широко используются в технике автоматического управления, в электронно-вычислительной технике, и т. д.

Эти устройства (их в общем случае называют переключательными, или коммутационными, схемами) содержат сотни реле, полупроводниковых элементов и других переключающих элементов. Описание и конструирование таких схем в силу их большого объема представляет трудную задачу.

Еще в 1910 году физик П. С. Эренфест указал на возможность применения аппарата алгебры логики при исследовании релейно-контактных схем. Однако его идеи начали реализовываться значительно позже, когда создание общей теории конструирования таких схем стало остро необходимым.

Использование алгебры логики в конструировании коммутационных схем оказалось возможным в связи с тем, что каждой схеме можно поставить в соответствие некоторую формулу алгебры логики и каждая формула алгебры логики реализуется с помощью некоторой схемы. Это обстоятельство помогает выявить возможности упрощения заданной схемы, изучая соответствующую формулу, а упрощение формулы затем реализовать как упрощение схемы.

В то же время еще до построения схемы можно заранее описать с помощью формул те функции, которые схема должна выполнять. Рассмотрим, как устанавливается связь между формулами алгебры логики и переключательными схемами.

Под переключательной схемой понимается схематическое изображение некоторого устройства, состоящего из

переключателей;

соединительных проводников;

входов в схему и выходов из нее.

Переключателями могут быть электромеханические устройства (выключатели, переключатели, кнопки), электромагнитные реле, полупроводниковые элементы и т. п., а входами и выходами — клеммы, на которые подается электрическое напряжение.

Коммутационной схемой принимается в расчет только два состояния каждого переключателя, которые называются «замкнутым» и «разомкнутым».

72

Рассматриваются основные три схемы: инвертор, схема логического сложения и схема логического умножения.

Логические операции – «стрелка Пирса» и операция Шеффера – для самостоятельного изучения

Раздел 4. Архитектура и состав современного ПК Тема 3. История развития компьютеров (для самостоятельного изучения) Этапы развития вычислительной техники

Аналитическая машина Бэббиджа Слово "компьютер" означает "вычислитель", т.е. устройство для вычислений.

Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Многие тысячи лет назад для счета использовались счетные палочки, камешки и т.д. Более 1500 лет тому назад (а может быть и значительно раньше) для облегчения счета стали использовать счеты.

В1642 г. Блез Паскаль изобрел устройство, механически выполняющее сложение чисел, а в 1673 г. Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия. Начиная с XIX в. арифмометры получили очень широкое применение. На них выполнялись даже сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала и специальная профессия - счетчик - человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность инструкций в последствии стали называть программой). Но многие расчеты производились очень медленно - даже десятки счетчиков должны были работать по несколько недель и месяцев. Причина проста - при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограниченна.

Еще в первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство - компьютер (Бэббидж называл его Аналитической машиной). Именно Бэббидж впервые додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж хотел построить свой компьютер как механическое устройство, а программы собирался задавать посредством перфокарт — карт из плотной бумаги с информацией, наносимой с помощью отверстий. Однако довести до конца эту работу Бэббидж не смог — она оказалась слишком сложной для техники того времени.

Первые компьютеры

В40-ходах XX в. сразу несколько групп исследователей повторили попытку Бэббиджа на основе техники XX в. — электромеханических реле. Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электромеханических реле. Но из-за войны работы Цузе не были опубликованы. А в США в 1943 г. на одном из предприятий фирмы IBM американец Говард Эйкен создал более мощный компьютер под названием «Марк-1». Он уже позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и реально использовался для военных расчетов.

Однако электромеханические реле работают весьма медленно и недостаточно надежно. Поэтому начиная с 1943 г. в США группа специалистов под руководством Джона Мочли и Преспера Экерта начала конструировать компьютер ENIAC на основе на основе электронных ламп, а не наоснове реле. Созданный ими компьютер работал в тысячу раз быстрее, чем Марк-1. Однако обнаружилось, что большую часть времени этот компьютер простаивал — ведь для задания программы в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом

73

провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Первой поколение ЭВМ (1945-1954)

Чтобы упростить и убыстрить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т.е. универсальных вычислительных устройств.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ.

И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом.

В Европе первый компьютер был создан в 1947 г. в Великобритании. В Советском Союзе первая ЭВМ МЭСМ (малая электронная счетная машина) была создана в 194648 г.г. коллективом ученых, возглавляемых академиком Сергеем Алексеевичем Лебедевым в Киеве.

Компьютеры первого поколения занимали огромные площади, потребляли очень много энергии, были ужасно дороги в эксплуатации. Поэтому эти инструменты были мало доступны и применялись для решения государственных, промышленных и научных задач.

Принципы Джона Фон Неймана

1. Использование двоичной системы представления данных

Нейман убедительно продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. Сегодня ЭВМ стали обрабатывать и нечисловые виды информации - текстовую, графическую, звуковую и другие, но двоичное кодирование данных попрежнему составляет информационную основу любого современного компьютера.

2. Принцип хранимой программы

Нейман первым догадался, что программа может храниться в виде нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

3. Принцип последовательного выполнения операций

Структурно основная память состоит из пронумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

4. Принцип произвольного доступа к ячейкам оперативной памяти

Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Второе поколение ЭВМ (1955-1964)

74

В 40-х и 50-х годах компьютеры создавались на основе электронных ламп. Поэтому были очень большими (занимали огромные залы), дорогими и ненадежными — ведь электронные лампы, как и обычные лампочки, часто перегорают.

Но в 1948 г. были изобретены транзисторы — миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности. Первые компьютеры на основе транзисторов появились в конце 50-х годов.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризировали свою бухгалтерию, предвосхищая моду на двадцать лет.

Третье поколение ЭВМ (1965-1974)

После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами.

В1968 г. был выпущен первый компьютер на интегральных схемах.

Вэти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных

идорогих моделей.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов.

Количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой персонального компьютера.

Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 г. одновременно появились операционная система Unix и язык программирования Си, оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Появление персональных компьютеров

В 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel персонального компьютера, т.е. устройства, выполняющего те же функции, что и большой

75

компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel. Этот компьютер продавался по цене около 500 дол. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами.

Успех Альтаир заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например, программа для редактирования текстов. Все эти сделало покупку персональных компьютеров весьма выгодным для бизнеса. Использование же больших компьютеров для этих целей было слишком дорого.

Появление IBM PC

Вконце 70-х годов распространение персональных компьютеров даже привело к некоторому снижению спроса на большие компьютеры и мини-компьютеры (мини-ЭВМ). Это стало предметом серьезного беспокойства фирмы IBM — ведущей компании по производству больших компьютеров, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров. Однако руководство фирмы недооценило будущую важность этого рынка и рассматривало создание персонального компьютера всего лишь как мелкий эксперимент — что-то вроде одной из десятков проводившихся в фирме работ по созданию нового оборудования. Чтобы не тратить на этот эксперимент слишком много денег, руководство фирмы предоставило подразделению, ответственному за данный проект, невиданную в фирме свободу. В частности, ему было разрешено не конструировать персональный компьютер «с нуля», а использовать блоки, изготовленные другими фирмами. И это подразделение сполна использовало предоставленный шанс.

Вавгусте 1981 г. новый компьютер под названием IBM PC (читается — Ай-Би-Эм Пи-Си) был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей.

Фирма IBM не сделала свой компьютер единым неразъемным устройством и не стала защищать его конструкцию патентами. Наоборот, она собрала компьютер из независимо изготовленных частей и не стала держать спецификации этих частей и способы их соединения в секрете. Напротив, принципы конструкции IBM PC были доступны всем желающим. Этот подход, называемый принципом открытой архитектуры, обеспечил потрясающий успех компьютеру IBM PC, хотя и лишил фирму IBM возможности единолично пользоваться плодами этого успеха. Вот как открытость архитектуры IBM PC повлияла на развитие персональных компьютеров:

1. Перспективность и популярность IBM PC сделала весьма привлекательным производство различных комплектующих и дополнительных устройств для IBM PC. Конкуренция между производителями привела к удешевлению комплектующих и устройств.

2. Очень скоро многие фирмы перестали довольствоваться ролью производителей комплектующих для IBM PC и начали сами собирать компьютеры, совместимые с IBM PC. Поскольку этим фирмам не требовалось нести огромные издержки фирмы IBM на

76

исследования и поддержание структуры громадной фирмы, они смогли продавать свои компьютеры значительно дешевле (иногда в 2-3 раза) аналогичных компьютеров фирмы IBM. Совместимые с IBM PC компьютеры вначале стали презрительно называли «клонами», но эта кличка не прижилась, так как многие фирмы-производители IBM PCсовместимых компьютеров стали реализовывать технические достижения быстрее, чем сама IBM. 3.

Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами сотен различных производителей.

Все это привело к удешевлению IBM PC-совместимых компьютеров и стремительному улучшению их характеристик, а значит, к росту их популярности.

Четвертое поколение ЭВМ К сожалению, дальше стройная картина смены поколений нарушается. Обычно

считается, что период с 1975 по 1985 гг. принадлежит компьютерам четвертого поколения. Однако есть и другое мнение - многие полагают, что достижения этого периода не настолько велики, чтобы считать его равноправным поколением.

Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

И, конечно же, самое главное - что с начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Классификация по элементной базе

Существует множество классификаций компьютеров, а самой распространенной является классификация по элементной базе. Именно изменения в элементной базе влекут изменение наиболее критической характеристики компьютеров - их быстродействия, т.е. количество операций в секундах, которые выполняет компьютер.

Классификация ЭВМ по назначению

По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженернотехнических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

77

Специализированные ЭВМ используются для решения конкретных задач, в частности, бортовые компьютеры в самолетах и автомобилях.

Классификация ЭВМ по размерам

По размерам и функциональным возможностям ЭВМ можно разделить на сверхбольшие (суперЭВМ), большие, малые, сверхмалые (микроЭВМ).

СуперЭВМ. К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду. Объемом оперативной памяти 2000-10000 Мб.

В настоящее время в мире насчитывается несколько тысяч суперЭВМ (в 1991 г.-

900 шт.).

Большие ЭВМ. Большие ЭВМ за рубежом чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят компьютеры с производительностью от 10 до 100 миллионов операций в секунду. Объем оперативной памяти 64-10000 Мб.

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа с большими базами данных, управление вычислительными сетями и их ресурсами.

Малые ЭВМ. Малые ЭВМ (миниЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями. К миниЭВМ относятся компьютеры с производительностью до 100 миллионов операций в секунду. Объем оперативной памяти

4-512 Мб.

Мини-ЭВМ используется для управления технологическими процессами, для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

МикроЭВМ. К микроЭВМ относятся компьютеры с производительностью до 100 миллионов операций в секунду. Объем оперативной памяти 4-256 Мб.

Многопользовательские микроЭВМ - это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.

78

Персональные компьютеры - однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Рабочие станции - представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).

Серверы - многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Серверы

Серверы обычно относят к микроЭВМ, но по своим характеристикам мощные серверы скорее можно отнести к малым ЭВМ и даже к мэйнфреймам, а суперсерверы приближаются к суперЭВМ.

Сервер - выделенный для обработки запросов от всех станций вычислительной сети компьютер, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы. Такой универсальный сервер часто называют сервером приложений.

Специализированные серверы используются для устранения наиболее "узких" мест в работе сети: создание и управление базами данных и архивами данных, поддержка многоадресной факсимильной связи и электронной почты, управление многопользовательскими терминалами (принтеры, плоттеры) и др.

Файл-сервер используется для работы с файлами данных, имеет объемные дисковые запоминающие устройства.

Архивационный сервер (сервер резервного копирования) служит для резервного копирования информации в крупных сетях, обычно выполняет ежедневное автоматическое архивирование со сжатием, информации от серверов и рабочих станций по сценарию, заданному администратором сети (естественно, с составлением каталога архива).

Почтовый сервер – сервер для организации электронной почты, с электронными почтовыми ящиками.

Сервер печати предназначен для эффективного использования системных принтеров.

Персональные компьютеры

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

автономность эксплуатации без специальных требований к условиям окружающей

среды;

гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

"дружественность" операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

высокую надежность работы (более 5000 ч наработки на отказ).

За рубежом распространенными моделями компьютеров в настоящее время являются IВМ РС с микропроцессорами Рentium и Pentium Pro.

Персональные компьютеры можно классифицировать по ряду признаков. Классификация ПК по конструктивным особенностям

79

Переносные компьютеры

Большинство переносных компьютеров имеют автономное питание от аккумуляторов, но могут подключаться и к сети.

В качестве видеомониторов у них применяются плоские жидкокристаллические дисплеи.

Клавиатура чаще всего чуть укороченная: 84-86 клавиш (вместо 101 у настольных ПК), но может иметься разъем для подключения и полной клавиатуры; у некоторых моделей клавиатура раскладная.

Переносные компьютеры весьма разнообразны: от громоздких и тяжелых (до 15 кг) портативных рабочих станций до миниатюрных электронных записных книжек массой около 100 г.

Портативные компьютеры - наиболее мощные и крупные переносные ПК. Они оформляются часто в виде чемодана. Их характеристики аналогичны характеристикам стационарных ПК - рабочих станций: мощные микропроцессоры, оперативная память емкостью до 64 Мбайт, гигабайтные дисковые накопители и т.д.

По существу, это обычные рабочие станции, питающиеся от сети, но конструктивно оформленные в корпусе, удобном для переноса, и имеющие, как и все переносные ПК, плоский жидкокристаллический видеомонитор. Обычно имеют модемы и могут оперативно подключаться к каналам связи для работы в вычислительной сети.

Этот тип переносных компьютеров может эффективно использоваться для выездных презентаций, но может с успехом применяться и в стационарном варианте, позволяя экономить место на рабочем столе.

Компьютеры-блокноты выполняют все функции настольных ПК. Конструктивно они оформлены в виде миниатюрного чемоданчика (иногда со съемной крышкой) размером с небольшую книгу. По своим характеристикам во многом совпадают с портативными компьютерами, отличаясь от них лишь размерами и несколько меньшими объемами оперативной и дисковой памяти. Питание осуществляется от портативных аккумуляторов, обеспечивающих автономную работу в течение 3 -4 ч.

Карманные компьютеры имеют массу около 300 г. Это полноправные персональные компьютеры, имеющие микропроцессор, оперативную и постоянную память, обычно монохромный жидкокристаллический дисплей, портативную клавиатуру, порт - разъем для подключения в целях обмена информацией к стационарному ПК.

80

Соседние файлы в папке из электронной библиотеки