Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы к Экзамену 305.docx
Скачиваний:
183
Добавлен:
03.08.2021
Размер:
1.55 Mб
Скачать

54. Кинетика и закономерности биокаталитических процессов при трансформации свойств водного сырья;

КИНЕТИКА БИОЛОГИЧЕСКИХ ПРОЦЕССОВ — учение о закономерностях и скоростях протекания различных биологических процессов

Особенности протекания хим. реакций в биол, системах рассматривает кинетика биологических процессов. Биологические реакции представляют собой ферментативные процессы, протекающие в Сложно организованной системе. Такие системы обмениваются с окружающей средой энергией и веществом, вследствие чего их называют открытыми системами (см. Термодинамика). Открытые системы обладают рядом специфических кинетических свойств, из которых наиболее важным следует считать возможность установления в них динамического стационарного состояния, при к-ром значения многих внутренних параметров системы (напр., концентрации компонентов) в течение определенного периода сохраняются постоянными. Это происходит потому, что процессы притока и оттока вещества взаимно компенсируют друг друга, что является одним из условий поддержания гомеостаза (см.).

Другой особенностью биол, процессов является то, что в открытой системе сложные ферментативные реакции (полиферментативные процессы) обладают свойством осуществлять саморегуляцию, т. е. увеличивать или уменьшать скорость, вследствие активаций или ингибирования (торможения) процесса конечными продуктами или веществами, образующимися в ходе данной реакции (см. Биологическая система, ауторегуляция). Скорость и направление такого процесса часто регулируются относительно небольшим количеством таких стадий, которые в данном случае можно считать управляющими (или определяющими). В случае, напр., совокупности последовательных реакций ими могут быть стадии, протекающие с наименьшей скоростью. При этом изменение скорости той или иной стадии под влиянием ингибитора или активатора приводит к изменению скорости протекания всего биол, процесса.

Скорость протекания реакций в живом организме определяется прежде всего ферментами управляющих стадий (ключевыми ферментами), могущими влиять на свойства других ферментов и структурные условия развития реакции. Поэтому К. б. п. следует рассматривать как кинетику сложного процесса, представляющего собой совокупность сопряженных, последовательных, параллельных и других реакций.

Кинетику сложного процесса часто изучают, анализируя поведение одного определяющего звена (управляющей стадии), либо наиболее медленного, лимитирующего общую скорость всей реакции (при последовательном его включении в цепь), либо наиболее быстрого, служащего основным путем реакции (при параллельном включении его в цепь). Таким звеном часто оказывается элементарный процесс  , сочетающий обратимую и необратимую стадии.

Элементом С наряду с обычными промежуточными продуктами могут служить неустойчивые образования, относительные концентрации которых невелики, но тем не менее определяют течение всего процесса (напр., активированные комплексы, возбужденные светом молекулы, и т. п.). Скорость необратимой (или слабообратимой) стадии процесса в целом непосредственно зависит от концентрации таких переходных состояний. Стационарная концентрация промежуточного соединения (С) устанавливается и поддерживается благодаря существованию обратимой стадии процесса, что позволяет вычислить концентрацию активного промежуточного продукта через константу его диссоциации, равновесия с исходным субстратом и концентрацию этого субстрата.

Различные биол, процессы протекают при участии разнообразных ферментов, которые ускоряют реакции. Фермент (Е), связываясь с субстратом реакции (S), образует ферментсубстратный активированный комплекс (ES). Реакция при этом протекает по схеме:

где P — продукт реакции. Первая стадия является обратимой, а вторая — необратимой (или слабообратимой) .

Ферментативные реакции имеют характерную особенность насыщения субстратом. При небольших концентрациях субстрата скорость ферментативной реакции увеличивается пропорционально его концентрации (реакция первого порядка), а при больших концентрациях становится постоянной (т. е. переходит в реакцию нулевого порядка).

Зависимость скорости ферментативной реакции от концентрации субстрата описывается уравнением Михаэлиса — Ментен:

v = (V*S)/(km + S),

где v — скорость реакции, V — максимальная скорость реакции, km — константа Михаэлиса, численно равная концентрации субстрата, при к-рой скорость реакции достигает значения 0,5 V (см. Ферменты).

Необходимо учесть, что кинетика многих ферментативных реакций оказывается более сложной, чем это следует из уравнения Михаэлиса, поскольку в ферментативной реакции могут участвовать несколько субстратов и образовываться несколько продуктов, а также принимать участие специфические обратимые или необратимые активаторы или ингибиторы (обратимые, образуя с ферментом диссоциирующие комплексы, и необратимые, образуя нед Ассоциирующие комплексы, вызывают изменения в функц, группах фермента). 

Биокатализ (то же, что ферментативный катализ) — ускорение химических реакций в живых клетках специальными белками — ферментами. В основе биокатализа лежат те же самые химические закономерности, что и в основе небиологического катализа, используемого в химическом производстве. Вместе с тем биокатализ на основе ферментов отличается ускорением реакций в десятки-сотни и даже тысячи миллиардов раз в сравнении с лабораторными и промышленными химическими реакциями, специфичностью и регулируемостью, т. е. изменением активности ферментов в зависимости от потребностей организма.

Ферменты представляют собой природные биокатализаторы. В настоящее время в биологических системах обнаружено несколько тысяч индивидуальных ферментов, 3709 из них – выделено, изучено и внесено в специальную базу данных. Подсчитано, что живая клетка может одновременно содержать до 1000 различных ферментов, каждый из которых ускоряет ту или иную химическую реакцию. В химическом плане большинство ферментов имеют белковую природу, однако из этого правила есть исключение – рибозимы.