Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат фотон, теплоемкость твердых тел.doc
Скачиваний:
86
Добавлен:
09.02.2015
Размер:
1.07 Mб
Скачать

Последние исследования

В настоящее время считается, что свойства фотонов хорошо поняты с точки зрения теории. Стандартная модель рассматривает фотоны как калибровочные бозоны со спином, равным 1, с нулевой массой покоя и нулевым электрическим зарядом (последнее следует, в частности, из локальной унитарной симметрии U(1) и из опытов по электромагнитному взаимодействию). Однако физики продолжают искать несоответствия между экспериментом и положениями Стандартной модели. Постоянно повышается точность проводимых экспериментов по определению массы и заряда фотонов. Обнаружение хоть сколько-нибудь малой величины заряда или массы у фотонов нанесло бы серьёзный удар по Стандартной модели. Все эксперименты, проведённые до сих пор, показывают, что у фотонов нет ни заряда, ни массы покоя Наибольшая точность, с которой удалось измерить заряд фотона равна 5×10−52 Кл (или 3×10−33 e); для массы — 1,1×10−52 кг (6×10−17 эВ/c2 или 1×10−22 me).

Многие современные исследования посвящены применению фотонов в области квантовой оптики. Фотоны кажутся подходящими частицами для создания на их основе сверхпроизводительных квантовых компьютеров. Изучение квантовой запутанности и связанной с ней квантовой телепортации также является приоритетным направлением современных исследований. Кроме этого идёт изучение нелинейных оптических процессов и систем, в частности, явления двухфотонного поглощения, синфазной модуляции и оптических параметрических осцилляторов. Однако подобные явления и системы преимущественно не требуют использования в них именно фотонов. Они часто могут быть смоделированы путём рассмотрения атомов в качестве нелинейных осцилляторов. Нелинейный оптический процесс спонтанного параметрического рассеяния часто используется для создания перепутанных состояний фотонов. Наконец, фотоны используются в оптической коммуникации, в том числе в квантовой криптографии.

Теплоемкость твердых тел

Классическая теория не смогла объяснить зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристаллической решетки независимы (модель кристалла как совокупности независимых колеблющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических осцилляторов).

Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией Е=. Фонон есть квант энергии звуковой волны (так как упругие волны — волны звуковые). Фононы являются квазичастицами — элементарными возбуждениями, ведущими себя подобно микрочастицам. Аналогично тому как квантование электромагнитного излучения привело к представлению о фотонах, квантование упругих волн привело к представлению о фононах.

Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке — он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.

Энергия кристаллической решетки рассматривается как энергия фононного газа, подчиняющегося статистике Бозе - Эйнштейна, так как фононы являются бозонами (их спин равен нулю). Фононы могут испускаться и поглощаться, но их число не сохраняется постоянным; поэтому в формуле (235.1) для фононов необходимо m положить равным нулю.

Применение статистики Бозе - Эйнштейна к фононному газу — газу из невзаимодействующих бозе-частиц — привело П. Дебая к количественному выводу, согласно которому при высоких температурах, когда T>>TD (классическая область), теплоемкость твердых тел описывается законом Дюлонга и Пти, а при низких температурах, когда T<<TD (квантовая область), — пропорциональна кубу термодинамической температуры: СV~. В данном случае TD — характеристическая температура Дебая, определяемая соотношением kТD=, где —предельная частота упругих колебаний кристаллической решетки. Таким образом, теория Дебая объяснила расхождение опытных и теоретических (вычисленных на основе классической теории) значений теплоемкости твердых тел.

Кристалл представляет собой систему упорядоченно расположенных атомов, обладающих определенными массами; между атомами действуют силы притяжения и отталкивания, уравновешивающие друг друга при определенных равновесных расстояниях между атомами. При отклонении атома из положения равновесия возникает возвращающая сила, противоположная смещению, величина которой зависит от типа атома, его окружения и направления смещения в кристалле. Согласно классической теории колебаний, в такой системе "упруго-связанных масс", состоящей из атомов, имеют место нормальные колебания с собственными частотами , где ; причем колебания с частотами , являются независимыми друг от друга; движение атомов может быть представлено как суперпозиция этих нормальных колебаний.

Именно как набор независимых осцилляторов с индивидуальными собственными частотами и рассматривается кристалл как в классической, так и в квантовой теории тепловых свойств кристаллов и молекул [1-3].

Согласно классической теории, при температуре в среднем каждый осциллятор будет обладать энергией ; всего осцилляторов , следовательно кристалл будет обладать энергией . Молярная теплоемкость кристалла окажется равной: . Это - известный закон Дюлонга и Пти, утверждающий что молярная теплоемкость любых кристаллических веществ одна и та же и . Он сравнительно хорошо выполняется только при сравнительно высоких температурах порядка 700-2000 К. При более низких температурах он не выполняется даже приближенно.

Значительно более точное описание тепловых свойств кристалла дает квантовая теория теплоемкости кристаллов, разработанная Эйнштейном и Дебаем. В ее основе лежит предположение о квантовании энергии колебаний, подобно тому как квантовалась энергия электромагнитных колебаний в квантовой теории теплового излучения (том 5).

Согласно квантовой теории, энергия каждого нормального колебания квантуется по тем же законам, как и энергия одиночного осциллятора (см. том 5). Энергию считают квантом (порцией) энергии колебаний осциллятора, сам же квант принято называть фононом и рассматривать его как частицу, обладающую, в частности, такими свойствами частицы, как энергия и импульс . Взаимная независимость нормальных колебаний позволяет использовать для их описания теорию Бозе-газа, в которой в качестве частиц-Бозонов рассматривают фононы. В следующих разделах будет показано, что квантовая теория колебаний кристалла позволяет правильно объяснять многие наблюдаемые на опыте закономерности, в частности, зависимость теплоемкости и теплопроводности от температуры. Эта теория, называемая еще фононной теорией, позволяет объяснять и многие другие явления, связанные с рассеянием излучений и частиц веществом, передачей энергии и заряда. Для многих задач важно знать характеристики фононов, которые можно экпериментально исследовать различными методами.