Добавил:
ikot.chulakov@gmail.com Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Основы проектирования РН Куренков

.pdf
Скачиваний:
723
Добавлен:
12.07.2020
Размер:
10.93 Mб
Скачать

Таблица 7.3. Предельно допустимые концентрации паров

компонентов топлива

Компоненты топлива

 

ПДК, мг/м3

 

 

 

 

Кислород

-

 

-

 

 

 

 

Керосин

300

 

-

 

 

 

 

Азотная кислота

5

 

Токсичен

 

 

 

 

Перекись водорода

1

 

Токсичен

 

 

 

 

НДМГ

0,1

 

Токсичен

 

 

 

 

Фтор

0,03

 

Токсичен

 

 

 

 

Для сравнения: предельно допустимая концентрация паров отравляющего газа фосген равна 0,5, а для синильной кислоты – 0,3.

Плотность топлива и его компонентов

Значения плотности некоторых компонентов топлива приведены в табл. 7.4.

Таблица 7.4. Плотность некоторых компонентов топлива

Компоненты топлива

Плотность, кг/м3

Жидкий кислород

1140

 

 

Жидкий водород

70

 

 

Керосин

860

 

 

НДМГ

785-808

 

 

Аэрозин -50

890

 

 

Четырехокись азота N2O4

1440 - 1450

 

 

Азотная кислота HNO3 (70%) + окислы азота (30%)

1570 - 1610

 

 

Природный газ (жидкий при минус 161,6°С)

424,5

 

 

Кроме обычной плотности используют среднюю плотность пары компонентов топлива, в которой учитываются плотности и объемы как окислителя, так и горючего:

141

ср

mОк mГ

.

(7.4)

VОк VГ

Значения средних плотностей для некоторых пар компонентов топлива приведены в табл. 7.1.

Соотношение компонентов топлива

Соотношение компонентов топлива можно характеризовать следующими коэффициентами.

Молярный (теоретический) стехиометрический коэффициент рассчитывается как отношение молярного веса окислителя к молярному весу горючего. Например, сгорание водорода в среде кислорода соответствует следующей химической формуле реакции:

2H2 O2 2H2O .

Отсюда можно получить молярный стехиометрический коэффициент 324 8 .

Однако в ракетной технике используется не стехиометрический коэффициент , при котором происходит полное сгорание компо-

нентов топлива, а коэффициент - отношение расхода в единицу времени массы окислителя к массе горючего (секундного расхода окислителя к секундному расходу горючего):

 

mОк

.

(7.5)

 

 

m Г

 

Это объясняется тем, что выбор характеристик топлива происходит на основе компромисса между противоречивыми требованиями к его частным показателям. Например, при проектировании ракет и двигателей важнее другая характеристика топлива, а именно, удельный импульс, максимальное значение которого достигается при несколько меньшем соотношении компонентов топлива, чем стехиометрическое соотношение. Это явление связано с потерями энергии на диссоциацию продуктов сгорания топлива.

В проектных расчетах коэффициент рассчитывают как отношение массы окислителя к массе горючего, находящихся в ракетном блоке, то есть:

142

mОк mОк .

m Г m Г

Значения коэффициента для некоторых пар компонентов топлива представлены в табл. 7.1.

С учетом коэффициента может быть получен средний вес топлива, если в качестве исходной использовать формулу (7.4) и выполнить преобразования:

 

 

 

 

 

 

 

 

 

 

 

mОк

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ср

mОк mГ

 

 

mГ

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

VОк

 

 

VГ

 

 

VОк

 

 

mОк

 

 

1

 

 

 

 

 

V V

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

Ок

 

Г

 

m

 

 

 

m

 

 

 

 

 

m

 

 

 

m m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

Г

 

 

 

 

 

Г

 

 

 

Ок

 

 

Г

 

Г

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

Ок

 

 

 

1

. (7.6)

mОК

 

 

 

1

 

 

 

1

 

 

 

 

 

 

1

 

 

 

Г Г Ок

 

m

 

m

V

 

Г

 

 

 

 

 

 

 

 

Г

 

 

 

 

 

 

 

 

 

 

 

 

Г

 

 

Ок

 

Ок

 

 

 

 

 

 

 

 

 

Ок

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Состав твердого топлива обычно задается весовыми процентами компонентов. Варьируя состав компонентов, можно изменять в желаемом направлении удельную тягу, плотность и скорость горения топлива. В табл. 7.2 приведен также состав твердых топлив при соотношении компонентов, близких к оптимальным.

Стабильность

Стабильность топлива в первую очередь зависит от температуры кипения (для жидких топлив). Для твердых топлив важна прочность, трещиностойкость и др. Значения температуры кипения и замерзания для некоторых компонентов жидкого топлива приведены в табл. 7.5.

Наличие производственной базы

Жидкий кислород, керосин, азотная кислота, этиловый спирт и т.п. используются в других отраслях промышленности и потому, как правило, бездефицитны и относительно дешевы.

Наличие специальной производственной базы

Для производства жидкого водорода, жидкого фтора, ДМГ, НДМГ, гидразина необходимы специальные установки или заводы. Поэтому такие компоненты топлива, как правило, имеют относительно высокую стоимость.

143

Таблица 7.5 . Температура кипения и замерзания компонентов топлива

Компоненты топлива

 

Температура

Температура

 

замерзания, С

кипения, С

 

 

Жидкий кислород

 

- 218,4

- 183

 

 

 

 

Жидкий водород

 

- 259,2

- 258,7

 

 

 

 

Керосин

 

- 50…- 70

+ 150…+ 170

 

 

 

 

Азотная кислота HNO3 (70%)

+

Не выше - 60

+ 44…+ 49

окислы азота (30%)

 

 

 

 

Четырехокись азота N2O4

 

- 11,3

+ 21,5

 

 

 

 

ДМГ

 

- 50

+ 55

 

 

 

 

Природный газ

 

- 182,5

- 161,6

 

 

 

 

Стоимость

Стоимость некоторых компонентов топлива в масштабе цен 1990 года приведена в табл. 7.6. Цены с тех пор (с 1990 года), естественно, изменились, однако соотношение цен, по-видимому, не претерпело существенных изменений.

Таблица 7.6. Стоимость некоторых компонентов топлива и газов

(цены 1990 г.)

Компоненты

Стоимость, руб/т

Азотный тетраксид - AT

120

 

 

Несимметричный диметилгидразин - НДМГ

900

 

 

Жидкий кислород - О2

40

Жидкий водород - Н2

8000 - 15000

Керосин РГ-1 (Т-1)

50

 

 

Жидкий азот

50

 

 

Гелий

55000

 

 

Перекись водорода – Н2О2 85-98% концентрации

760 - 2400

7.4.Особенности использования твердого ракетного топлива

Вначале эры развития баллистических ракет использовались в основном жидкие компоненты топлива, так как были определенные

144

проблемы технологического плана в обеспечении прочности и трещиностойкости больших по габаритам топливных зарядов. Кроме того, не достигалась требуемая точность попадания баллистических ракет на твердом топливе из-за разброса характеристик двигателей по тяге и времени окончания их работы.

Однако после решения этих проблем постепенно сначала США, а затем и СССР перешли на твердотопливные баллистические ракеты. Этот переход осуществлялся несмотря на то обстоятельство, что удельный импульс у топлива на жидких компонентах несколько выше, чем у твердого топлива. Дело в том, что, во-первых, боеготовность баллистических ракет на твердом топливе выше, чем их боеготовность на жидких компонентах топлива. Во-вторых, в твердотопливных ракетах отсутствуют многие элементы пневмогидравлических систем и автоматики двигателей, которые увеличивают массу конструкций баллистической ракеты.

В настоящее время на ракетах-носителях твердое топливо используется в основном на ракетных блоках первых ступеней. Часто конструктивно они выполняются в виде боковых ускорителей.

Кроме того, некоторые снятые с вооружения баллистические ракеты на твердом топливе используются для запусков космических грузов, например пятиступенчатый комплекс «Старт», который создан на основе ракет «Тополь» и «Пионер», снятых с вооружения.

7.5. Критерии выбора топлива

Напомним, что критерий эффективности – это правило, в соответствии с которым проводят какой-либо выбор. Для выбора топлива существует несколько критериев. В данном учебном пособии рассматриваются два критерия, которые обсуждаются ниже.

7.5.1.Выбор топлива с учетом влияния средней плотности

иудельного импульса на стартовую массу РН

Для ракет, где основное требование сводится к минимальной массе, объему и габаритам ракеты, важно рациональное сочетание удельного импульса и средней плотности компонентов топлива, так как на практике встречаются случаи, когда топливо с высоким значе-

145

нием удельного импульса обладает малой средней плотностью. Например, если в качестве компонентов топлива используются жидкий водород и жидкий кислород, то масса конструкции баков в этом случае будет увеличена по сравнению с другими компонентами топлива. Поэтому необходимо использовать критерии при выборе компонентов топлива, учитывающие эти обстоятельства.

Так как масса конструкции РН зависит от плотности компонентов топлива, то вполне естественно желание проектантов выбрать топливо, обеспечивающее минимальную стартовую массу РН при заданной массе полезной нагрузки и заданной характеристической скорости ракеты:

m0 min mПН const; VX const.

Данный критерий выбора топлива будет равносилен следующему:

pi

min

 

Vx const ,

(7.7)

 

 

 

 

 

 

где pi

 

m0i

 

- отношение начальной массы i-й ступени ракеты к

mПН

 

 

 

 

 

массе полезной нагрузки.

То есть минимальное значение pi отношения начальной массы

i-й ступени ракеты к массе полезной нагрузки будет соответствовать наиболее выгодному в весовом отношении топливу при фиксирован-

ных значениях характеристической скорости ракеты (VX const ). Построить целевую функцию этого критерия для ракет с различ-

ными конструкциями ракетных блоков и схемами соединения их между собой – довольно сложная задача. Но можно пойти по другому пути. А именно, вести сравнение не реальных ракет или их прототипов, а так называемых «приведенных» ракет с упрощенной конструктивной схемой. В приведенной ракете имеется всего одна ступень и один топливный отсек, который представляет собой бак сферической формы, содержащий оба компонента топлива со средней плотностью. Кроме этого, ракета имеет двигатель и полезную нагрузку. Все остальные части ракеты как бы отсутствуют (или негласно считается, что они одинаковы для ракет с различными компонентами топлива).

146

Следует заметить, что такое упрощение можно вводить только для сравнения масс конструкций ракет с целью выбора топлива по критерию минимума относительной массы полезного груза ракеты, однако такое упрощение не годится для расчета характеристической скорости и других характеристик ракеты.

Покажем, как построить целевую функцию критерия (7.7) для такой приведенной ракеты с упрощенной конструкцией.

Напомним, что отношение начальной массы ступени к массе ее полезной нагрузки связано с конструктивными характеристиками ракетных блоков и числом Циолковского соотношением

pi zi

si

1

,

(7.8)

s

z

 

 

i

 

i

 

 

где zi – число Циолковского i-й ступени;

si – конструктивная характеристика ракетного блока i-й ступени. По определению конструктивная характеристика S выражается

следующим образом:

 

S

mБ

,

(7.9)

 

 

 

mK

 

где mБ

– масса ракетного блока;

 

mK

 

– масса конструкции ракетного блока.

 

Учитывая, что

 

mБ mK mT ,

 

где mТ

- масса топлива ракетного блока,

 

mK mTO тдв ,

 

где mТО

- масса топливного отсека;

 

тдв - масса двигателя, можно провести следующие преобразования:

S

mK mT

1

mT

1

mT

 

 

 

 

m

 

 

m

 

m

 

т

 

K

 

K

 

TO

дв

147

1

 

 

 

1

 

 

 

 

 

1

 

 

1

 

 

.

(7.10)

m

т

 

т

 

 

 

TO

 

дв

 

 

 

дв

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

m

 

 

m

 

 

 

 

T

T

 

 

T

 

В этом выражении введено обозначение:

 

 

 

 

 

mТО

.

 

 

 

 

 

 

 

(7.11)

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

Т

 

 

 

 

 

 

 

 

Преобразуем отношение тдв

mТ

, стоящее в знаменателе зави-

симости (7.10), выразив это отношение через характеристики конструкции двигателя, а также через числа Циолковского. При этом учтём, что относительный вес двигательной установки по определению

ДУ

 

mдв g0

,

 

 

 

R0

где g0 - ускорение земного тяготения вблизи поверхности Земли; R0 - тяга ракетного двигателя вблизи поверхности Земли. Последовательность преобразований приведена ниже:

 

тдв

 

дв R0

 

дв n0m0 g0

дв n0m0

дв n0

 

 

 

дв n0

 

 

 

m m g

 

 

 

 

m g

 

 

 

m

 

 

 

 

mТ

 

 

m0

m0 mТ

 

 

 

 

Т

 

 

 

Т

 

0

 

 

 

 

 

Т

0

 

 

 

Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m0

 

 

 

 

 

m0

 

 

 

 

 

 

дв n0

 

 

 

 

 

 

 

дв n0

 

 

 

дв n0

z

дв n0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

(7.12)

 

 

m0

mТ

 

 

 

 

1

 

 

 

 

1

 

z 1

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m0

 

 

 

 

 

m0

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m0 mТ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Здесь

использованы

следующие

 

обозначения: m0 -

начальная

масса ракеты; n0 - начальная перегрузка ракеты; z

- число Циолков-

ского.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставляя (7.12) в (7.10), получаем

 

 

 

 

 

 

 

 

 

S 1

 

 

1

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

дв 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставляя это выражение в (7.8) и учитывая, что приведенная ракета одноступенчатая, получаем

148

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s 1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

z

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дв n0

 

 

 

 

 

 

 

 

 

p z

 

z

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

s z

 

 

1

 

 

 

 

 

 

дв n0

 

 

2 дв n0

 

 

 

 

 

1

 

 

 

 

 

z

z

 

1 z z

 

 

 

 

 

 

 

 

 

 

 

z

 

дв n0

 

 

 

 

z 1

 

 

 

z 1

 

 

 

 

 

 

 

 

 

z 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

z

 

 

.

(7.14)

 

 

 

 

 

 

 

 

 

 

 

 

 

дв n0

1

 

 

 

 

1 z z дв n0

1

 

z

z 1

z 1 z

 

 

 

 

 

 

 

 

 

Число Циолковского приведенной ракеты выразим (из формул Циолковского) через характеристическую скорость VX и удельный импульс топлива w :

 

VX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z e

 

w

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.15)

Подставляя (7.15) в (7.14), получаем

 

 

 

 

VX

 

 

 

 

 

1

 

 

 

 

 

 

 

p e

w

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

(7.16)

 

 

 

 

 

VX

 

VX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дв n0 1

 

 

 

 

 

 

 

 

1

e w e w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Перейдем к преобразованию параметра в этой формуле, выра-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

зив числитель и знаменатель выражения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.11) через характеристики конструк-

 

 

 

 

 

 

 

p Д

 

 

 

 

 

 

 

 

ции топливного бака и топлива.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Расчетная схема для сферического

 

DТО

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

бака представлена на рис. 7.1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

На этом рисунке введены следую-

 

 

 

 

 

 

 

 

 

 

 

ТО

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

щие обозначения: DТО -

диаметр топ-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ливного бака сферической формы; ТО -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

толщина стенки бака; pД

- среднее дав-

Рис. 7.1. Расчетная схема

 

ление в баке.

 

 

для сферического бака

 

 

 

 

 

 

 

 

Преобразуем сначала числитель выражения (7.11):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DТО 2

2

 

mТО М FТО

ТО М

4

 

 

ТО М DТО ТО ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

149

где М - плотность конструкционного материала бака; FТО - площадь поверхности топливного отсека.

Толщину стенки бака можно определить, если известны давление в баке pД , допустимое напряжение конструкционного материала

бака ДОП и коэффициент безопасности f:

f pД D .

4 ДОП

Тогда масса топливного отсека будет составлять

 

 

 

D2

f p

D

D3

f p

 

 

 

 

m

 

М

ТО

 

Д ТО

 

ТО

 

Д

 

М

.

ТО

 

 

4 ДОП

 

 

4 ДОП

 

 

 

 

 

 

 

 

 

 

 

Преобразуем теперь знаменатель выражения (7.11):

 

 

 

4

 

DTO 3

 

3

 

mT

VT T

 

 

 

 

 

T

 

DTO

T .

3

 

6

 

 

 

 

2

 

 

 

Подставляя (7.18) и (7.19) в выражение (7.11), получаем

(7.17)

(7.18)

(7.19)

 

 

 

 

 

D3

 

f p

Д

 

М

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

4 ДОП

 

 

 

 

3 f pД

М

 

 

 

TO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

(7.20)

mT

 

 

 

3

 

 

 

 

 

2 ДОП

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

DTO T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подставляем (7.20) в (7.16), получаем

 

 

VX

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p e w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

(7.21)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 f

pД М

 

 

 

VX

 

VX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 e w

e w дв n0 1

 

 

 

 

 

2

ДОП Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Будем сравнивать варианты (создаваемого изделия и аналога)

для одинаковых значений:

 

 

 

 

 

 

 

 

 

 

 

- характеристических скоростей ракет (VX const );

- плотности конструкционных

материалов

топливных баков

( M const );

-допустимых напряжений ( ДОП const );

-давлений в баках ( pД const );

150