Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по химии, но не все.docx
Скачиваний:
14
Добавлен:
21.11.2019
Размер:
170.44 Кб
Скачать

Механизмы образования ковалентных связей

Различают несколько механизмов образования ковалентной связи: обменный (равноценный), донорно-акцепторный,дативный.

При использовании обменного механизма образование связи рассматривается как результат спаривания спинов свободных электронов атомов. При этом осуществляется перекрывание двух атомных орбиталей соседних атомов, каждая из которых занята одним электроном. Таким образом, каждый из связываемых атомов выделяет для обобществления пары по электрону, как бы обмениваясь ими. например, при образовании молекулы трифторида бора из атомов три атомные орбитали бора, на каждой из которых имеется по одному электрону, перекрываются с тремя атомными орбиталями трех атомов фтора (на каждой из них также находится по одному неспаренному электрону). В результате спаривания электронов в областях перекрывания соответствующих атомных орбиталей появляется три пары электронов, связывающих атомы в молекулу.

По донорно-акцепторному механизму перекрывается орбиталь с парой электронов одного атома и свободная орбиталь другого атома. В этом случае в области перекрывания также оказывается пара электронов. По донорно-акцепторному механизму происходит, например, присоединение фторид-иона к молекуле трифторида бора. Вакантная р-орбиталь бора (акцептора электронной пары) в молекуле BF3 перекрывается с р-орбиталью иона F, выступающего в роли донора электронной пары. В образовавшемся ионе [BF4] все четыре ковалентные связи бор−фтор равноценны по длине и энергии, несмотря на различие в механизме их образования.

Атомы, внешняя электронная оболочка которых состоит только из s- и р-орбиталей, могут быть либо донорами, либо акцепторами электронной пары. Атомы, у которых внешняя электронная оболочка включает d-орбитали, могут выступать в роли и донора, и акцептора пар электронов. В этом случае рассматривается дативный механизм образования связи. Примером проявления дативного механизма при образования связи служит взаимодействие двух атомов хлора. Два атома хлора в молекуле Cl2 образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р-электроны. Кроме того, происходит перекрывание 3р-орбитали атом Cl-1, на которой имеется пара электронов, и вакантной 3d-орбитали атома Cl-2, а также перекрывание 3р-орбитали атом Cl-2, на которой имеется пара электронов, и вакантной 3d-орбитали атома Cl-1. Действие дативного механизма приводит к увеличению прочности связи. Поэтому молекула Cl2 является более прочной, чем молекула F2, в которой ковалентная связь образуются только по обменному механизму:

18

Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d) орбиталей центрального атома многоатомной молекулы с возникновением того же числа орбиталей, эквивалентных по своим характеристикам

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей. Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи, в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии.

В 1954 году Нобелевский комитет удостоил Л.Полинга премии по химии «За изучение природы химической связи и его применение к объяснению строения сложных молекул». Но сам Л.Полинг не был удовлетворён введением σ,π — описания для двойной и тройной связи и сопряжённых систем.

В 1958 году на симпозиуме, посвящённом памяти Кекуле, Л.Полинг развил теорию изогнутой химической связи, учитывающую кулоновскую электронную корреляцию. По этой теории двойная связь описывалась как комбинация двух изогнутых химических связей, а тройная связь как комбинация трёх изогнутых химических связей.[1]

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи — Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались»[2].

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра».[2]

[править]Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp3-гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28', что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Теория гибридизации

Согласно этой теории химическая связь образуется за счет перекрывания не чистых, а так называемых “гибридных”, смешанных орбиталей. Иначе говоря, при гибридизации первоначальная форма и энергия орбиталей изменяется и образуются новые орбитали одинаковой формы и энергии. Гибридное электронное облако асимметрично, имеет большую вытянутость по одну сторону от ядра, что приводит к большему перекрыванию и большей прочности связи. Гибридная орбиталь представлена на рис. 3.7.

Таким образом, гибридизация связана с энергетическим выигрышем за счет:

а) образования более прочной связи,

б) более симметричного распределения электронной плотности внутри молекулы.

Число гибридных орбиталей всегда равно числу исходных орбиталей. Гибридные орбитали образуются только в случае, если исходные орбитали не очень сильно отличаются по энергии. Так 1s-орбитали не могут гибридизироваться с 2р, так как у них разное значение главного квантового числа, следовательно, большая разница в энергиях орбиталей.

19

???

20

Теория молекулярных орбиталей (МО) дает представление о распределении электронной плотности и объясняет свойства молекул. В этой теории квантовомеханические зависимости для атома распространены на более сложную систему — молекулу. Молекула рассматривается как целое, а не как совокупность сохранивших индивидуальность атомов. В молекуле (как и в атоме) имеются дискретные энергетические состояния отдельных электронов (молекулярные орбитали) с их самосогласованным движением в поле друг друга и всех ядер молекулы.

Предполагается, что все электроны данной молекулы (как и в атоме) распределяются по соответствующим орбиталям. Состояние электрона в атоме описывается одноэлектронной волновой функцией ψ, являющейся решением уравнения Шрёдингера. Волновая функция ψ, зависящая от четырёх квантовых чисел, имеющая конкретный математический вид и удовлетворяющая условию нормировки и однозначности называется молекулярной орбиталью (МО) (по аналогии с атомной). Каждая орбиталь характеризуется своим набором квантовых чисел, отражающих свойства электронов в данном энергетическом состоянии. В отличие от одноцентровых орбиталей атомов, орбитали молекул многоцентровые, то есть молекулы имеют общие орбитали для двух или более атомных ядер. Каждая молекулярная орбиталь обладает определённой энергией, приближённо характеризующейся соответствующим потенциалом ионизации.

По аналогии с атомными s-, p-, d-, f- орбиталями молекулярные орбитали обозначают греческими буквами σ-, π-, δ-, γ-. МО образуются при комбинировании атомных орбиталей при достаточном сближении. Совокупность МО молекулы с указанием её типа и количеством электронов на ней даёт электронную конфигурацию молекулы. Существуют 3 типа молекулярных орбиталей: связывающие, разрыхляющие и несвязывающие. Электроны на связывающих молекулярных орбиталях упрочняют связь, на разрыхляющих как бы дестабилизируют (расшатывают). Молекула является устойчивой лишь в том случае, если число электронов на связывающих орбиталях превышает число электронов на разрыхляющих. Электроны, находящиеся на несвязывающих молекулярных орбиталях, участия в образовании химической связи не принимают. Из исходных атомных орбиталей возникает n МО. Так, при образовании двухатомной молекулы H2 из атомов Н из s-орбиталей двух атомов Н возникают две двухцентровые МО — одна энергетически более выгодная (связывающая σsсв), другая менее выгодная (разрыхляющая σsразр), чем исходные атомные орбитали. На связывающей МО электрон большую часть времени пребывает между ядрами (повышается электронная плотность), способствуя их химическому связыванию. На разрыхляющей же МО электрон большую часть времени находится за ядрами, вызывая отталкивание ядер друг от друга.

Характер распределения электронов по МО определяет порядок (кратность) связи, её энергию, межъядерные расстояния (длина связи), магнитные свойства молекул и др. Заполнение молекулярных орбиталей подчиняется тем же правилам, что и заполнение атомных: принципу энергетической выгодности, принципу Паули, правилу Хунда, принципу заполнения электронных структур Aufbau. В общепринятом приближении молекулярная орбиталь рассматривается как линейная комбинация атомных орбиталей (приближение МО ЛКАО).Кратность связи в теории молекулярных орбиталей определяется выражением

Преимущества

По сравнению с методом валентных схем имеет следующие преимущества:

Позволяет описывать химическую связь в электронодефицитных молекулах (диборан), молекулярных радикалах (монооксид азота), молекулярных ионах (нитрозил, нитроил, гидразоний, оксигенил), гипервалентных соединениях (соединения благородных газов).

Объясняет образование молекул с многоцентровыми орбиталями. Например, в азотной кислоте азот имеет степень окисления +5, хотя предельное число связей не может быть больше числа валентных орбиталей (то есть 4). Это противоречие разрешается исходя из модели трёхцентровой двухэлектронной связи.

Описывает водородную связь как частный случай ковалентной: через модель делокализации электронной плотности и образование трёхцентровых четырёхэлектронных связей (например, -H•••[F-H•••F]-).

Когда обнаружилась способность благородных газов образовывать соединения, некоторые учёные были склонны считать что электроны распариваются на следующий энергетический уровень и образуются нормальные двухцентровые двухэлектронные связи. Однако энергия на распаривание слишком велика, и она не покрылась бы энергией, выделившейся в результате образования химических связей. Оказывается, образуются трёхцентровые четырёхэлектронные связи. Модель МО ЛКАО позволяет объяснить образование химической связи в такого рода соединениях.

Энергию МО в молекуле либо определяют экспериментально (спектроскопически и др.) либо рассчитывают методами квантовой механики и квантовой химии (чисто теоретическими и полуэмпирическими).

21

Поляризация химической связи — асимметрия (смещение) электронной плотности, связывающей молекулярной орбитали ковалентной связи.

Если атомы, образующие ковалентную связь, одинаковы и несут одинаковые или близкие по электроотрицательности заместители, распределение электронной плоскости симметрично относительно плоскости, перпендикулярной связи и пересекающей связь на равных расстояниях от атомов; такие связи называют неполярными.

В случае, когда атомы, образующие ковалентную связь различны (C-F, O-H) или несут различные заместители (H3C-CN, H3CC-CF3), электронная плотность смещается в сторону более электроотрицательного атома; такие связи называются поляризованными (полярная связь).

Полярная связь — химическая связь, обладающая постоянным электрическим дипольным моментом вследствие несовпадения центров тяжести отрицательного заряда электронов и положительного заряда ядер. Большинство ковалентных, а также донорно-акцепторные связи являются полярными. Молекулы с полярной связью обычно гораздо более реакционноспособны, чем неполярные молекулы. Полярность связи не следует отождествлять с полярностью молекул, которая зависит также от геометрического расположения атомов в молекуле. Поляризация связей вносит существенный вклад в электрический дипольный момент молекулы.

Дипольный момент поляризованной связи может вызывать поляризацию соседних связей в молекуле (индуктивный или I-эффект), однако такой эффект быстро слабеет по цепи σ-связей. В случае наличия в молекуле системы сопряженных π-связей возможно сильное влияние мезомерного или M-эффекта делокализации электронов на поляризацию связи — вплоть до обращения поляризации. В качестве иллюстрации такого влияния можно привести распределение электронной плотности в молекулах пирролидина и пиррола: если в первом случае дипольный момент составляет 1.6 D и направлен к более электроотрицательному атому азота, то во втором — 1.8 D и направлен от азота к циклу (см. Рис.).

В модели ионной химической связи наличие ковалентной составляющей взаимодействия между ионами можно рассматривать как результат электростатического воздействия ионов друг на друга. При этом их считают не жесткими сферами, а деформируемыми системами, состоящими из положительно заряженного ядра и отрицательно заряженного электронного облака. Такой подход не имеет строгого математического описания, однако во многих случаях он на качественном уровне приводит к правильным выводам.

Электростатическое воздействие на частицу вызывает в ней смещение электронного облака относительно ядра - поляризацию. Величина этого смещения пропорциональна поляризуемости частицы. Поляризация ионов сочетает их поляризуемость и поляризующее действие.

Факторы, влияющие на поляризацию ионов

И полязизуемость, и поляризующее действие ионов зависит от электронной структуры, заряда и размера иона. Считают, что поляризуемость иона обусловлена преимущественно деформацией внешней электронной оболочки. Она усиливается с ростом числа внешних электронов. Максимальная поляризуемость - у ионов, имеющих 18-электронные внешние оболочки. Для ионов элементов с одинаковым числом внешних электронов (находящихся в одной группе Периодической системы) поляризуемость ионов растет с увеличением порядкового номера. Это связано с удалением внешних электронов от ядра и увеличением экранирования ядра внутренними электронами.

Если элемент образует несколько разных ионов, то поляризуемость иона уменьшается с ростом его заряда (и, следовательно, уменьшением ионного радиуса). В ряду ионов, имеющих одинаковую электронную конфигурацию, поляризуемость растет с уменьшением заряда (например, в ряду Mg2+ − Na+ − Ne0 − F− − O2−).

Поляризующее действие, напротив, тем значительнее, чем больше заряд, чем меньше радиус и чем устойчивее электронная оболочка. Наибольшее поляризующее действие оказывают те ионы, которые сами слабо поляризуются, и наоборот.

Поскольку для анионов характерны большие размеры и малый заряд, а их электронная структура, как правило, отвечает структуре благородного газа, они обладают сильной поляризуемостью и слабым поляризующим действием.

Поэтому обычно рассматривают лишь поляризацию аниона катионом. Если электронная оболочка катиона легко деформируются, то возникающий в нем диполь усиливает его поляризующее действие на анион, а анион начинает оказывать дополнительное действие на катион. Этот эффект для одновременно поляризующихся катионов и анионов приводит к появлению дополнительного поляризационного эффекта. Он особенно силен для катионов с 18-электронной внешней оболочкой.

Деформация электронной оболочки в результате поляризации приводит к уменьшению межъядерного расстояния, превращая ионную связь в полярную ковалентную. Чем выше поляризуемость электронной оболочки аниона, тем больше вклад ковалентной составляющей. Наоборот, чем ниже поляризация аниона, тем ближе соединение к ионному типу.

Влияние поляризации ионов на свойства веществ

Представления о поляризации ионов помогают объяснить различия в свойствах многих однотипных веществ. Например, сравнение хлоридов натрия и калия с хлоридом серебра показывает, что при близких ионных радиусах поляризуемость катиона Ag+, имеющего 18-электронную внешнюю оболочку, выше, что приводит к увеличению прочности связи металл-хлор и меньшей растворимости хлорида серебра в воде.

Взаимная поляризация ионов облегчает разрушение кристаллов, что приводит к понижению температур плавления веществ. По этой причине температура плавления TlF (327 oС) существенно ниже, чем RbF (798 oC). Температура разложения веществ также понижатся с усилением взаимной поляризации ионов. Поэтому иодиды обычно разлагаются при более низких температурах, чем остальные галогениды, а соединения лития - термически менее устойчивы, чем соединения других щелочных элементов.

Деформируемость электронных оболочек сказывается и на оптических свойствах веществ. Чем более поляризована частица, тем ниже энергия электронных переходов. Если поляризация мала, возбуждение электронов требует более высокой энергии, что отвечает ультрафиолетовой части спектра. Такие вещества обычно бесцветны. В случае сильной поляризации ионов возбуждение электронов происходит при поглощении электромагнитного излучения видимой области спектра. Поэтому некоторые вещества, образованные бесцветными ионами, окрашены.

22

Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2 3р5 Это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. — l е —> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная пара полностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:

Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения, «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы окружённые диполями растворителя.

При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии.

Энергия ионной связи

Энергия связи для ионного соединения - это энергия, которая выделяется при его образовании из бесконечно удаленных друг от друга газообразных противоионов. Рассмотрение только электростатических сил соответствует около 90% от общей энергии взаимодействия, которая включает также вклад неэлектростатических сил (например, отталкивание электронных оболочек).

При возникновении ионной связи между двумя свободными ионами энергия их притяжения определяется законом Кулона:

E(прит.) = q+ q− / (4π r ε),

где q+ и q− - заряды взаимодействующих ионов, r - расстояние между ними, ε - диэлектрическая проницаемость среды.

Так как один из зарядов отрицателен, то значение энергии также будет отрицательным.

Согласно закону Кулона, на бесконечно малых расстояниях энергия притяжения должна стать бесконечно большой. Однако этого не происходит, так как ионы не являются точечными зарядами. При сближении ионов между ними возникают силы отталкивания, обусловленные взаимодействием электронных облаков. Энергия отталкивания ионов описывается уравнением Борна:

Е(отт.) = В / rn,

где В - некоторая константа, n может принимать значения от 5 до 12 (зависит от размера ионов). Общая энергия определяется суммой энергий притяжения и отталкивания:

Е = Е(прит.) + Е(отт.)

Ее значение проходит через минимум. Координаты точки минимума отвечают равновесному расстоянию r0 и равновесной энергии взаимодействия между ионами E0:

E0 = q+ q− (1 - 1 / n) / (4π r0 ε)

В кристаллической решетке всегда имеет место большее число взаимодействий, чем между парой ионов. Это число определяется в первую очередь типом кристаллической решетки. Для учета всех взаимодействий (ослабевающих с увеличением расстояния) в выражение для энергии ионной кристаллической решетки вводят так называемую константу Маделунга А:

E(прит.) = A q+ q− / (4π r ε)

Значение константы Маделунга определяется только геометрией решетки и не зависит от радиуса и заряда ионов. Например, для хлорида натрия она равна 1,74756.

23

???

24

Влияние водородных связей на свойства веществ

Водородные связи влияют на физические (т.кип. и т.пл., летучесть, вязкость, спектральные характеристики) и химические (кислотно-основные) свойства соединений.

Межмолекулярные водородные связи обусловливают ассоциацию молекул, что приводит к повышению температур кипения и плавления вещества. Например, этиловый спирт C2H5OH, способный к ассоциации, кипит при +78,3°С, а диметиловый эфир СН3ОСН3, не образующий водородных связей, лишь при 24°С (молекулярная формула обоих веществ С2Н6О).

Образование Н-связей с молекулами растворителя способствует улучшению растворимости. Так, метиловый и этиловый спирты (CH3OH, С2Н5ОН), образуя Н-связи с молекулами воды, неограниченно в ней растворяются.

Внутримолекулярная водородная связь образуется при благоприятном пространственном расположении в молекуле соответствующих групп атомов и специфически влияет на свойства. Например, Н-связь внутри молекул салициловой кислоты повышает ее кислотность.

25

Ван-дер-ваальсовы силы — силы межмолекулярного (и межатомного) взаимодействия с энергией 10 — 20 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Я. Д. ван дер Ваальсом в 1869 году.

Ван-дер-Ваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ, жидкость и твёрдые тела).

К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.

Ван-дер-ваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами

Ван-дер-ваальсовое взаимодействие состоит из трех типов слабых взаимодействий:

  • Ориентационные силы, диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твердом состоянии. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

  • Дисперсионное притяжение (лондоновские силы). Взаимодействием между мгновенным и наведенным диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

  • Индукционное притяжение. Взаимодействие между постоянным диполем и наведенным (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что ван-дер-ваальсовые силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного[4]предположения построены многие двумерные модели, «описывающие» свойства, в частности графита и нитрида бора.