Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по химии, но не все.docx
Скачиваний:
14
Добавлен:
21.11.2019
Размер:
170.44 Кб
Скачать

Закон Мозли

Закон Мозли — закон, связывающий частоту спектральных линий характеристического рентгеновского излучения атома химического элемента с его порядковым номером. Экспериментально установлен английским физиком Генри Мозли в 1913 году.

[Править]Формулировка закона Мозли

Согласно Закону Мозли, корень квадратный из частоты   спектральной линии характеристического излучения элемента есть линейная функция его порядкового номера  : 

где   — постоянная Ридберга,   — постоянная экранирования,   — главное квантовое число. На диаграмме Мозли зависимость от   представляет собой ряд прямых (К-, L-, М- и т. д. серии, соответствующие значениям n = 1, 2, 3,...).

Закон Мозли явился неопровержимым доказательством правильности размещения элементов в периодической системе элементов Д. И. Менделеева и содействовал выяснению физического смысла  .

В соответствии с Законом Мозли, рентгеновские характеристические спектры не обнаруживают периодических закономерностей, присущих оптическим спектрам. Это указывает на то, что проявляющиеся в характеристических рентгеновских спектрах внутренние электронные оболочки атомов всех элементов имеют аналогичное строение.

Более поздние эксперименты выявили некоторые отклонения от линейной зависимости для переходных групп элементов, связанные с изменением порядка заполнения внешних электронных оболочек, а также для тяжёлых атомов, появляющиеся в результате релятивистских эффектов (условно объясняемых тем, что скорости внутренних электронов сравнимы со скоростью света).

В зависимости от ряда факторов — от числа нуклонов в ядре атома (изотопический сдвиг), состояния внешних электронных оболочек (химический сдвиг) и пр. — положение спектральных линий на диаграмме Мозли может несколько изменяться. Изучение этих сдвигов позволяет получать детальные сведения об атоме.

12

Основные свойства атома, которые легче всего проследить в пределах периодической системы: радиус, потенциал, энергия ионизации, энергия сродства к электрону, электроотрицательность.

Радиус – кратчайшее расстояние от ядра до максимума электронной плотности внешнего энергетического уровня. В пределах периода радиус атома уменьшается. Это обусловлено одновременным увеличением заряда ядра атома и увеличением количества электронов на внешнем энергетическом уровне. В результате этого увеличивается силы электростатического притяжения между ядром и внешними электронами. Количество энергоуровней в пределах периода одинаково. Все это приводит к сжатию атома.

В пределах группы главной подгруппы атомный радиус увеличивается. Это обусловлено увеличением количества энергоуровней. В пределах побочных подгрупп радиус не изменяется. Данный параметр является основным и определяет периодичность изменения всех остальных свойств.

Потенциал ионизации - это энергия необходимая для отрыва одного электрона от нейтрального атома. В периодах энергия ионизации увеличивается. В пределах группы главной подгруппы энергия ионизации уменьшается. В пределах группы побочной подгруппы энергия ионизации возрастает. Данный параметр определяет свойства элемента. В окислительно-восстановительных реакциях определяет кислотно-основные свойства и термодинамическую устойчивость.

Атомы элементов с максимальной энергией ионизации являются сильными окислителями. А атомы элементов с минимальной энергией ионизации — сильными восстановителями.

Энергия сродства к электрону – это энергия, которая выделяется при соединении одного электрона к атому. В отличии от энергии ионизации данный параметр применим не ко всем химическим элементам. Но тенденция к изменению следующая: в периоде слева на право энергия сродства к электронам возрастает. В группе главной подгруппе уменьшается. В побочной подгруппе увеличивается.

Электроотрицательность – это способность атома химического элемента оттягивать общую электронную плотность преобразования химических связей. В пределах периода электроотрицательность увеличивается. В группе главной подгруппы электроотрицательность уменьшается. В группе побочной подгруппы электроотрицательность увеличивается.

13

Расчет Гейтлера и Лондона дает количественное объяснение химической связи на основе квантовой механики. Он показывает, что если электроны атомов водорода обладают противоположно направленными спинами, то при сближении атомов происходит

значительное уменьшение энергии системы - возникает химическая связь. Образование химической связи обусловлено тем, что при наличии у электронов антипараллельных спинов становится возможным движение электронов около обоих ядер. Движение электронов около обоих ядер приводит к значительному увеличению плотности электронного облака в пространстве между ядрами, что, в свою очередь, вызывает ´стягиваниеª положительно заряженных ядер. Такое притяжение уменьшает потенциальную энергию электронов, а следовательно, и потенциальную энергию системы - возникает химическая связь*. Следовательно, образование химической связи объясняется понижением потенциальной энергии электронов, обусловленным увеличением плотности электронного облака в пространстве между атомными ядрами. Точные расчеты показывают, что при образовании связи кинетическая энергия электронов несколько увеличивается, но по абсолютной величине это увеличение меньше убыли потенциальной энергии. Можно доказать, что в системе, в которой действуют кулоновские силы, средняя кинетическая энергия частиц T всегда составляет ровно половину абсолютной величины средней потенциальной энергии их взаимодействия U. Это важное положение

называется теоремой вириала. Из нее следует, что ∆U = − 2∆T и ∆E = − ∆T. Квантово-механический расчет молекулы водорода, выполненный впервые Гейтлером и Лондоном с помощью приближенной функции (1.49), в дальнейшем неоднократно

осуществлялся другими учеными, которые использовали более сложные выражения для волновой функции (принимались во внимание деформация электронных оболочек атомов, отталкивание электронов и др.). В последних работах достигнуто совпадение рассчитанной величины энергии системы E0 с экспериментальным значением в пределах 0,001%. В расчетах, проводимых с помощью мощных ЭВМ, использовали выражения для волновой функции (1.43), содержащие около 100 членов. Таким образом, несмотря на невозможность точного решения уравнения Шредингера, использование приближенных методов позволяет провести расчет для молекулы водорода с весьма высокой точностью. Методами квантовой химии точно рассчитаны энергии многих других молекул. Развитие квантовой химии в значительной мере определяется прогрессом вычислительной техники, так как при одинаковой точности расчета затраты машинного времени растут приблизительно пропорционально n 4 , где п − число электронов в рассматриваемой молекуле. Гейтлер и Лондон провели также квантово-механический расчет энергии взаимодействия молекулы водорода с третьим атомом водорода. Расчет показал, что третий атом не будет притягиваться, т. е. образование молекулы Н3 невозможно. Так было дано теоретическое обоснование важнейшего свойства ковалентной связи − насыщаемости. Не приводя данный расчет, поясним его результат. Присоединение третьего атома к Н2 не происходит, поскольку условием для перекрывания электронных облаков, которое дает химическая связь, является наличие у электронов антипараллельных спинов. Спин электрона третьего атома водорода неизбежно будет совпадать по направлению со спином одного из электронов в молекуле, поэтому между третьим атомом водорода и молекулой водорода действуют силы отталкивания, подобные тем, которые появляются при сближении двух атомов водорода с параллельными спинами.

14

Типы химических связей: ковалентная, ионная, водородная, металлическая

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов — это внешние электроны, у d- элементов — внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

У атомов других элементов внешние энергетические уровни незавершенные. В процессе хим реакции осуществляется завершение внешних уровней, что достигается либо присоединением, либо отдачей электронов, а также образованием общих электронных пар. Эти способы приводят к образованию двух основных типов связи: ковалентной и ионной. Таким образом, при образовании молекулы каждый атом стремится приобрести устойчивую внешнюю электронную оболочку: либо двухэлектронную (дублет), либо восьми-злектромную (октет). Эта закономерность положена в основу теории образования химической связи. Образование химической связи за счет завершения внешних уровней в образующих связь атомах сопровождается выделением большого количества энергии, то есть возникновение химической связи всегда протекает экзотермически, поскольку оно приводит к появлению новых частиц (молекул), обладающих при обычных условиях большей устойчивостью, а следовательно, они меньшей энергией, чем у исходных. Одним из существенных показателей, определяющих какая связь образуется между атомами, является электроотрицательность, то есть способность атомом притягивать к себе электроны от других атомов. Электроотрицательность атомов элементов изменяется постепенно: в периодах периодической системы слева направо ее значение возрастает а в группах сверху вниз — уменьшается.

Химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар, называется ковалентной.1) Разберем пример образования химической связи между атомами с одинаковой электроотрицательностью, например, молекулы водорода Н2 Образование химической связи в молекуле водорода можно представить в виде двух точек: Н- + -Н -> Н : Н или черточкой, которая символизирует пару электронов: H-H Ковалентная связь, образованная атомами с одинаковой электроотрицательностью называется неполярной. Такую связь образуют двухатомные молекулы, состоящие из атомов одного химического элемента: H 2 , Cl 2 и др.2) Образование ковалентной связи между атомами, электроотрицательность которых различается незначительно. Ковалентная связь, образованная атомами с различной электроотрицательностью, называется полярной. При ковалентной полярной связи электронная плотность от общей пары электронов смещена к атому с большей электроотрицательностью. Примерами могут служить молекулы Н2О, NH3, H2S, CH3Cl. Ковалентная (полярная и неполярная) связь в наших примерах образовалась за счет неспаренных электронов связывающихся атомов. Такой механизм образования ковалентной связи называется обменным. Другой механизм образования ковалентной связи — донорно-акцепторный. В этом случае связь возникает за счет двух спаренных электронов одного атома (донора) и свободной орбитали другого атома (акцептор). Хорошо известный пример — образование иона аммония: Н++:NH 3 -> [ Н : NH3 | + <=====> NH4+ акцептор донор ион аммония электронов. При образовании иона аммония электронная пара азота становится общей для атомов N и Н, то есть возникает четвертая связь, которая не отличается от остальных трех.

Ионная связь возникает между атомами, электроотрицательность которых резко различается Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na ls2 2s2 2p 6 3s1; 17 Cl ls2 2p 6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. — l е —> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение.

Химическая связь, осуществляемая за счет электростатического притяжения между ионами, называется ионной связью. Соединения, образованные путем притяжения ионов называются ионными. Ионные соединения состоят из отдельных молекул только в парообразном состоянии. В твердом (кристаллическом) состоянии ионные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом случае отсутствуют. Ионные соединения образуют резко различные по величине электроотрицательности элементы главных подгрупп I и II групп и главных подгрупп VI и VII групп. Ионных соединений сравнительно немного. Например неорганические соли: NH4Cl (ион аммония NH4 + и ион хлора Cl-), а также солеобразные органические соединения: алкоголяты соли карбоновых кислот, соли аминов Неполярная ковалентная связь и ионная связь — два предельных случая распределения электронной плотности. Неполярной связи отвечает равномерное распределение связующего двух электронного облака между одинаковыми атомами. Наоборот, при ионной связи связующие электронное облако практически полностью принадлежит одному из атомов. В большинстве же соединений химические связи оказывают промежуточными между этими видами связи, то есть в них осуществляется полярная ковалентная связь.

Металлическая связь существует в металлах в твердом в жидком состоянии. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов (1-3 электрона) и низкую энергию ионизации (отрыва электрона). Поэтому валентные электроны слабо удерживаются в атоме, легко отрываются и имеют возможность перемещаться по всему кристаллу. В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные коны, а часть валентных электронов, свободно перемещаясь в объеме кристаллической решетки, образует «электронный газ», обеспечивающий связь между атомами металла. Связь, которую осуществляют относительно свободные электроны между ионами металлов в кристаллической решетке, называется металлической связью. Металлическая связь возникает за счет обобществления атомами валентных электронов. Однако между этими видами связи есть существенное различие. Электроны, осуществляющие ковалентную связь, в основном пребывают в непосредственной близости от двух соединенных атомов. В случае металлической связи электроны, осуществляющие связь, перемещаются по всему куску металла. Этим определяются общие признаки металлов: металлический блеск, хорошая проводимость теплоты и электричества, ковкость, пластичность и т. д. Общим химическим свойством металлов является их относительно высокая восстановительная способность.

Водородные связи могут образовываться между атомом водорода, связанным с атомом электроотрицательного элемента, и электроотрицательным элементом, имеющим свободную пару электронов(О,F,N). Водородная связь обусловлена электростатическим притяжением, которому способствуют малые размеры атома водорода, и отчасти, донорно-акцепторным взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Связи 0-Н имеют выраженный полярный характер: Водородная связь гораздо более слабая, чем ионная или ковалентная, но более сильная, чем межмолекулярное взаимодействие. Водородные связи обуславливают некоторые физические свойства веществ (например, высокие температуры кипения). Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, обеспечивая им определенную пространственную структуру (организацию).

15

энергия связи (для данного состояния системы) — разность между полной энергией связанного состояния системы тел или частиц и энергией состояния, в котором эти тела или частицы бесконечно удалены друг от друга и находятся в состоянии покоя:

где   — энергия связи компонентов в системе из i компонент (частиц),   — полная энергия i-го компонента в несвязанном состоянии (бесконечно удалённой покоящейся частицы) и   — полная энергия связанной системы.

Для системы, состоящей из бесконечно удалённых покоящихся частиц энергию связи принято считать равной нулю, т.е. при образовании связанного состояния энергия выделяется. Энергия связи равна минимальной работе, которую необходимо затратить, чтобы разложить систему на составляющие её частицы и характеризует стабильность системы: чем выше энергия связи, тем система стабильнее.

Для валентных электронов (электронов внешних электронных оболочек) нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации, для отрицательных ионов - со сродством к электрону.

Энергии химической связи двухатомной молекулы соответствует энергия её термической диссоциации составляет порядка сотен кДж/моль.

Энергия связи адронов атомного ядра определяется сильным взаимодействием. Для легких ядер она составляет ~0.8 МЭв на нуклон.

Длина химической связи

Длина химической связи — расстояние между ядрами химически связанных атомов[1][2]. Длина химической связи — важная физическая величина, определяющая геометрические размеры химической связи, её протяжённость в пространстве.

Нильс Бор отмечал: «… благодаря большой массе ядер по сравнению с массой электронов можно с большой точностью рассчитывать конфигурации атомов в молекулах, эти конфигурации соответствуют хорошо известным стурктурным формулам, которые оказались столь необходимыми для упорядочения химических данных».[3]

Для определения длины химической связи используют различные методы. Газовую электронографию, микроволновую спектроскопию, спектры комбинационного рассеяния и ИК спектры высокого разрешения применяют для оценки длины химических связей изолированных молекул в паровой (газовой) фазе.

Межъядерные расстояния в кристаллах определяют с помощью рентгеноструктурного анализа, нейтронографии и электронографии.[4]

Считается, что длина химической связи является аддитивной величиной, определяемой суммой ковалентных радиусов атомов, составляющих химическую связь. Л.Полинг в своей книге[5] привёл значения ковалентных радиусов большого числа элементов.

Однако, длина химической связи (dAB) между электроотрицательным и электроположительным атомами несколько короче, чем длина, полученная сложением ковалентных радиусов элементов (rA и rB), составляющих молекулу. Поправка на отклонение от принципа аддитивности ковалентных радиусов учитывается уравнением Шомакера-Стивенсона:

dAB = rA + rB — 0,09 (χA — χB)

и составляет величину k = 0,09 Δχ, где Δχ — разность значений электроотрицательностей атомов χA и χB.

В настоящее время разработана практическая шкала электротрицательностей атомов.[6]

Валентный угол — угол, образованный направлениями химических связей, исходящими из одного атома. Знание валентных углов необходимо для определения геометрии молекул. Валентные углы зависят как от индивидуальных особенностей присоединенных атомов, так и от гибридизации атомных орбиталей центрального атома. Для простых молекул валентный угол, как и другие геометрические параметры молекулы, можно рассчитать методами квантовой химии. Экспериментально их определяют из значений моментов инерции молекул, полученных путем анализа их вращательных спектров (смотри Инфракрасная спектроскопия, Молекулярные спектры, Микроволновая спектроскопия). Валентный угол сложных молекул определяют методами дифракционного структурного анализа.

Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей. Главная после суммарного заряда и положения системы в целом (ее радиус-вектора) характеристика конфигурации зарядов системы при наблюдении ее издали.

Дипольный момент — первый[прим 1] мультипольный момент.

Простейшая система зарядов, имеющая определенный (не зависящий от выбора начала координат) ненулевой дипольный момент — это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда на расстояние между зарядами и направлен от отрицательного заряда к положительному,

Электрический дипольный момент нейтральной системы зарядов не зависит от выбора начала координат, а определяется относительным расположением (и величинами) зарядов в системе.

Из определения видно, что дипольный момент аддитивен (дипольный момент наложения нескольких систем зарядов равен просто векторной сумме их дипольных моментов), а в случае нейтральных систем это свойство приобретает еще более удобную форму в силу изложенного в абзаце выше.

Подробности определения и формальные свойства

Дипольный момент ненейтральной системы зарядов, вычисленный по приведенному выше определению, может выбором начала координат быть сделан равным любому наперед заданному числу (например, нулю). Однако и в этом случае, если мы хотим избежать такого произвола, при желании может быть использована какая-нибудь процедура внесения однозначности (которая будет тоже представлять собой предмет произвольного условного соглашения, но всё же будет формально фиксирована).

Но и при произвольном выборе начала координат (ограничивающемся тем условием, чтобы начало координат находилось внутри данной системы зарядов или по крайней мере близко от нее, и уж во всяком случае не попадая в ту область, в которой мы вычисляем дипольную поправку к полю единственного точечного заряда или дипольный член мультипольного разложения) все вычисления (дипольной поправки к потенциалу или напряженности поля, создаваемого системой, действующий на нее со стороны внешнего поля вращающий момент или дипольная поправка к потенциальной энергии системы во внешнем поле) проходят успешно.

Электрический дипольный момент (если он ненулевой) определяет в главном приближении электрическое[прим 3] поле диполя (или любой ограниченной системы с суммарным нулевым зарядом) на большом расстоянии от него, а также воздействие на диполь внешнего электрического поля.

Физический и вычислительный смысл дипольного момента состоит в том, что он дает поправки первого порядка (чаще всего — малые) в положение каждого заряда системы по отношению к началу координат (которое может быть условным, но приближенно характеризует положение системы в целом — система при этом подразумевается достаточно компактной). Эти поправки входят в него в виду векторной суммы, и везде, где при вычислениях такая конструкция встречается (а в силу принципа суперпозиции и свойства сложения линейных поправок — см.Полный дифференциал — такая ситуация встречается часто), там в формулах оказывается дипольный момент.

ЭФФЕКТИВНЫЙ ЗАРЯД

(эффективная константа связи), в квантовой теории поля (КТП) —аналог экранированного заряда в классич. электродинамике сплошных сред. Электрич. заряд, помещённый в среду, вызывает её поляризацию. Если заряд положителен, то электростатич. силы притянут к нему отрицат. заряды среды и оттолкнут положительные. Возникнет частичная экранировка заряда, зависящая от расстояния (r) до него.

В КТП физ. вакуум, т. е. пр-во, не содержащее реальных ч-ц, обладает способностью реагировать на присутствие отд. физ. ч-цы виртуальными процессами рождения ч-ц, наз. поляризацией вакуума. В квант. электродинамике (КЭД) вследствие поляризации вакуума возникает явление, аналогичное экранировке классич. заряда в среде. Однако вид зависимости Э. з. Е(r) существенно отличается от классич. случая (см. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ). Поскольку электрич. заряд в КЭД выступает как константа связи, т. е. определяет интенсивность эл.-магн. вз-ствия полей, то понятие Э. з. переносится на любые модели КТП.

В общем случае Э. з. описывает эффекты усиления или ослабления вз-ствия в зависимости от расстояния (см. ПЕРЕНОРМИРОВКА). Так, напр., в единой теории слабого и эл.-магн. вз-ствий (см. СЛАБОЕ ВЗАИМОДЕЙСТВИЕ) Э. з. (аналогично КЭД) с увеличением расстояния убывает до значения заряда эл-на е (рис. 1). Напротив, в квантовой хромодинамике, описывающей сильное вз-ствие «цветных» кварков и елюонов, имеет место эффект антиэкранировки и убывание «цветового» Э. з. g(r) с уменьшением r (рис. 2), т. е. на малых расстояниях кварки становятся как бы свободными (т. н. асимптотическая свобода). С увеличением расстояния между кварками (и глюонами) Э. з. возрастает, что препятствует их разлёту. Это может оказаться причиной т. н. «инфракрасного удержания» кварков и глюонов (см. УДЕРЖАНИЕ ЦВЕТА), призванного объяснить их отсутствие в свободном состоянии.

Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

16

Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Термин ковалентная связь был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году[1][2]. Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становился катионом, а другой атом принимал электрон и становился анионом.

Позднее (1927 год) Ф.Лондон и В.Гайтлер на примере молекулы водорода дали первое описание ковалентной связи с точки зрения квантовой механики.

С учётом статистической интерпретации волновой функции М.Борна плотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). В теории отталкивания электронных пар рассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):

0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона.

Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Электроны тем подвижнее, чем дальше они находятся от ядер. Ковалентная связь это когда два атома делятся электронами и держатся вместе.

Теория валентных связей (метод валентных связей, метод валентных схем, метод локализованных электронных пар) — приближённый квантовохимический расчётный метод, основанный на представлении о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар.

Теория валентных связей заложена в 1927 году В.Гайтлером и Ф.Лондоном на примере квантовохимического расчёта молекулы водорода. В основе теории валентных связей лежит гипотеза о том, что при образовании молекулы из атомов, последние в значительной мере сохраняют свою электронную конфигурацию, а связывание атомов достигается в результате обмена электронов между ними и спаривания спинов двух электронов, находящихся на атомных орбиталях исходных атомов. Расчёт Гайтлера — Лондона оказался весьма значительным по своим результатам в развитии квантовой химии. В подтверждение электронной октетной теории (правило октета) Г.Льюиса было показано, что химическая связь в молекуле водорода действительно осуществляется парой электронов.

Электронная пара оказывается размазанной по всему пространству молекулы с различной плотностью, причём на линии связи между ядрами имеется сгущение электронной плотности по сравнению с другими областями пространства. Это сгущение электронной плотности на линии, связывающей ядра атомов, вызывает стягивающее действие на ядра и, соответственно, приводит к образованию химической связи (рис.1). Энергия связи определяется в основном обменным интегралом, величина которого существенно зависит от степени перекрывания атомных орбиталей атомов.

17