Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метод. по лабор. теплот. № 618 (КНИЖНЫЙ ВАРИАНТ...doc
Скачиваний:
8
Добавлен:
17.11.2019
Размер:
806.91 Кб
Скачать

Обработка экспериментальных данных

I. Выполнить пункты с 1 по 14 по обработке экспериментальных данных работы № 2 (стр. 14) с учетом, что в данном случае определяющий размер l=lP.

2. Сравнять полученную формулу с формулой, рекомендуемой для вертикальной стенки

при

при

Контрольные вопросы.

1. Что является движущей силой при свободной конвекции?

2. Какая разница в пограничных слоях при обтекании горизонтальной трубы и при обтекании вертикальных стенок?

3. Как влияет высота стенки на средний коэффициент теплоотдачи вертикальной стенки?

4. Какой вид критериального уравнения для расчета коэффициента теплоотдачи вертикальной стенки?

5. Какой размер выбирается в качестве определяющего в критериях?

6. Какую температуру называют определяющей и на что она влияет?

7. Влияет ли положение стенки на коэффициент теплоотдачи?

8. Зависит ли конвективный коэффициент теплоотдачи при свободной конвекции от диаметра теплоотдающего цилиндра?

Литература: 1, с. 152-160, с. 177-179, с.231, с.238; 3, с.406-414, с.345-346; 4, с.348-349, с.354-361, с.З88-391; 9, с.314-317, с.327-341, с.393-397.

Лабораторная работа 4

Определение коэффициента теплопроводности и температуропроводности твердых тел методом регулярного режима.

Цель работа: Закрепление теоретического материала по нестационарной теплопроводности курса теплопередачи путем экспериментального определения коэффициентов теплопроводности и. температуропроводности.

Методические указания.

Охлаждение однородного и изотропного нагретого тела в среде с постоянной температурой проходят две стадии.

В первой стадии охлаждения распределение температуры в теле в основном определяется его начальным состоянием. Эту стадию охлаждения называет неупорядоченным режимом. Во второй стадии нестационарного процесса теплопроводности распределение температуры в теле не зависит от его начального теплового состояния и определяется физическими свойствами, геометрической формой и размерами исследуемого тела, а также условиями теплообмена с окружающей средой. Вторая стадия охлаждения тела называется регулярным тепловым режимом. Теория регулярного режима была разработана Г.М.Кондратьевым. Во второй стадии нестационарного процесса теплопроводности изменение температуры t любой точки тела во времени при постоянной температуре среды и неизменном коэффициенте теплоотдачи, подчиняется простому экспоненциальному закону:

(4.1)

где Θ - избыточная температура в произвольной точке тела (отсчитанная от температуры среды tж). ; А - постоянный множитель; U - функция координат; l - основание натуральных логарифмов. Величина m в формуле (4.1) характеризует интенсивность охлаждения или нагревания и называется темпом охлаждения или нагревания, соответственно. Она выражает относительную скорость изменения температуры и для двух произвольных точек тела остается постоянной. Если вначале прологарифмировать, а затем продифференцировать по времени (4.1), то получим:

(4.2)

Г.М. Кондратьевым установлена связь между темпом охлаждения, его физическими и геометрическими свойствами, а также внешними условиями охлаждения. В общем виде эта зависимость выражается функцией:

(4.3)

где λ, СР, ρ - для твердого тела соответственно: теплопроводность, теплоемкость, плотность; l1 , l2... ln.- линейные размеры; К - коэффициент, характеризующий геометрическую форму твердого тела; α - коэффициент теплоотдачи от тела к окружающей среде.

В том случае, когда имеет место весьма интенсивный теплообмен между поверхностью тела и окружающей средой (теоретически ), величина m прямо пропорциональна коэффициенту температуропроводности α тела и уравнение (4.3) принимает конкретный вид:

(4.4)

Из (4.4) (4.5)

где - значение темпа охлаждения при (т.е. практически при βi критерий БИО). Уравнения (4.3) и (4.4) справедливы для тел любой геометрической формы.

Для определения коэффициента теплопроводности можно использовать частные решения уравнения (4.1). Например, при охлаждении сплошного шара радиусом R получается связь:

, [Вт/мК] (4.6)

Уравнения (4.4) и (4.6) получены для условий; когда окружающая среда предполагается настолько теплоемкой, что теплота, полученная от тела, практически не повышает ее температуру, т.е. .

Для экспериментального исследования коэффициентов α и λ применяются уравнения (4.5) и (4.6). Величиной, непосредственно определяемой из опытов, является темп охлаждения m. При расчете λ по (4.6) необходимо знать коэффициент теплоотдачи α, который считают известным.

Экспериментальные методы определения коэффициента температуропроводности заключаются в наблюдении за изменением температурного поля исследуемого материала при помещении калориметра в жидкостной термостат.

Методика определения коэффициента теплопроводности аналогична, с той лишь разницей, что для исследования используется воздушный термостат.