Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фармакокинетика лекарственных средств.docx
Скачиваний:
19
Добавлен:
16.11.2019
Размер:
316.44 Кб
Скачать

Фармакокинетика лекарственных средств.Часть 2

1.Терапевтический диапазон(коридор безопасности,терапевтическое окно)-это интервал концентраций от минимальной терапевтической до вызывающей появление первых признаков побочных действий.

2.Токсический закон-интервал концентрации от высшей терапевтической до смертельной.

4.Поддерживающая доза-доза ЛС,вводимая систематически,которая заполняет объем клиренса,т.е тот фрагмент Vd, который очищается от ЛС за интервал T: ПД=(Css*Cl* T)/F.

Терапевтический смысл: ПД компенсирует потери с клиренсом за интервал между введениями препарата.

Расчет для оптимального дозирования ЛС (для быстрого купирования приступа):

1. Рассчитываем ВД: ВД=(Css*Vd)/F

2. Выбираем интервал введения T (обычно большинство ЛС назначается с интервалом, близким к t1/2) и рассчитываем ПД: ПД=(Css*Cl* T)/F

3. Проверяем, не выходят ли колебания ЛС в крови за пределы терапевтического диапазона путем расчета Cssmax и Сssmin: max ; Cssmin = Cssmax × (1 – эл. фр.). Разница между Cssmax и Сssmin не должна превышать двух Css.

Элиминируемая фракция находится по графику (см. в.1 5) или по формуле:эл.фр

4. Если при выбранном нами интервале введения ЛС его колебания выходят за пределы терапевтического диапазона, меняем T и повторяем расчет (пункт 2 – пункт 4)

NB! Если ЛС не предназначено для купирования неотложных состояний или принимается в

таблетках, ВД не рассчитывается.

Принципы дозирования лекарств. Доза, ее способы и варианты введения.

Дозой называют количество лекарства, предназначенное для введения в организм пациента. Доза может вводиться инъекционным способом, т.е. с нарушением целостности кожных покровов и неинъекционным способом (т.е. без нарушения целостности таковых).

Возможно 2 варианта введения доз:

  • Непрерывный, который осуществляют путем длительных внутрисосудистых инфузий (вливаний) лекарства капельным способом или через автоматические дозаторы – инфузоматы. При непрерывном введении лекарства, концентрация его в организме изменяется плавно и не подвергается значительным колебаниям.

  • Прерывистое введение, осуществляется как инъекционным, так и неинъекционным способами и представляет собой введение лекарства через определенные промежутки времени (интервалы дозирования). При прерывистом введении лекарства его концентрация в организме непрерывно колеблется. После приема определенной дозы она вначале повышается, а затем постепенно снижается, достигая минимальных значений перед очередным введением лекарства. Колебания концентрации тем значительнее, чем больше вводимая доза лекарства и интервал между введениями.

Основной целью лекарственной терапии является обеспечение в организме терапевтического уровня лекарства. Для этого используют введение вначале нагрузочной, а затем – поддерживающих доз лекарства. Напомним формулы для расчета этих доз:

Dн=VdCтер

Dп=ClCтер, где - интервал между введениями.

Схема 10. Способы введения лекарств и создаваемая в организме при этом концентрация лекарства. А – непрерывная инфузия (20 ЕД/сут), В - прерывистое введение 10 ЕД 2 раза в день, С – прерывистое введение 20 ЕД 1 раз в сутки.

В случае инфузионного введения при расчете поддерживающей дозы множитель  принимают равным 1.

Дискретное (прерывистое) введение лекарств

При дискретном введении лекарственных средств между поддерживающей и насыщающей дозами существует следующая взаимосвязь:

.

Рассмотрим, как будет изменяться концентрация лекарства при его введении в организм в постоянной дозе с постоянной скоростью (схема 11).

Предположим, что мы назначили пациенту 50 ЕД некоторого лекарственного средства А, через каждый период полуэлиминации. Тогда, по прошествии первого периода полуэлиминации, когда в организме останется 50% дозы (25 ЕД) мы введем вторую дозу лекарства и общий его уровень составит 25+50=75 ЕД. К концу второго периода полуэлиминации останется 50% от этого количества лекарства или 37,5 ЕД (12,5 ЕД остаток от первой дозы и 25 ЕД – остаток от второй дозы), а после введения вновь 50 ЕД уровень лекарства достигнет 87,5 ЕД. Рассуждая и дальше аналогичным образом, можно показать, что после третьего периода полуэлиминации общий уровень лекарства в организме достигнет 93,75 ЕД, а после 4-го периода – 96,875 ЕД и, наконец, после завершения пятого периода полуэлиминации (при продолжающемся введении лекарства) в организме будет 98,438 ЕД. Как не трудно заметить, уровень лекарства стремиться достигнуть в нашем примере 100 ЕД, вблизи которого он в дальнейшем и будет совершать колебания.

Схема 11. Концентрация вещества в плазме, которая создается при его постоянном введении в течение 8 периодов полувыведения и после прекращения введения. Пояснения в тексте.

Если принять уровень предела нарастания концентрации лекарства за 100%, то наше разложение примет вид:

1 период полуэлиминации (1-я доза) = 50%

2 период полуэлиминации (2-я доза) = 25%+50% = 75%

3 период полуэлиминации (3-я доза) = 12,5%+25%+50% = 87,5%

4 период полуэлиминации (4-я доза) = 6,25%+12,5%+25%+50% = 93,75%

Практически, можно утверждать, что после 4-5 периодов полуэлиминации концентрация лекарственного средства при его повторных введениях перестает существенно нарастать.

Чем объясняется прекращение дальнейшего роста концентрации лекарства при его повторных введениях в одной и той же дозе? Очевидно, что в начале, когда уровень концентрации лекарства невысок, скорость его элиминации (которая пропорциональна количеству лекарственного вещества в организме в условиях кинетики нулевого порядка) также невысока. По мере увеличения количества вещества в организме нарастает и скорость его элиминации, поэтому рано или поздно наступит такой момент, когда возросшая скорость элиминации уравновесит вводимую дозу лекарства и дальнейший рост концентрации прекратиться.

Концентрация лекарственного средства в плазме крови, которая достигается при условии, что скорость введения лекарства в организм уравновешивает скорость его выведения получила название стационарной концентрации лекарственного вещества (СSS). Из уравнения:

следует, что *.

Возникает закономерный вопрос: что бы произошло с уравнением стационарной концентрации, если бы в нашем примере мы избрали иную дозу лекарственного средства или иной интервал между его введениями (равный не периоду полуэлиминации, а более редкий или частый)? Наконец, возможно нами умышленно был выбран такой пример и при других исходных данных мы бы не получили такой зависимости?

Вспомним, что , подставив это значение в формулу CSS имеем:

или

Таким образом, величина CSS прямо пропорциональна вводимой дозе и обратно пропорциональна интервалу между введениями лекарства. Иначе говоря, если бы в нашем примере мы увеличили вводимую дозу в 2 раза, то и уровень CSS тоже увеличился в 2 раза. Если бы мы увеличили интервал между введениями в 2 раза, то величина CSS уменьшилась бы во столько же раз. Но, особо отметим, что время достижения CSS при этом нисколько бы не изменилось (и по-прежнему составляло бы 4-5t½).

Поскольку лекарственное вещество вводится через дискретные интервалы времени, то очевидно, что величина СSS не будет постоянной, а начнет колебаться в каком-то диапазоне от максимального уровня (вскоре после введения лекарства) до минимального уровня перед очередным приемом лекарства. Эти границы колебаний не трудно рассчитать, они составляют:

и

Если ввести новою переменную , т.е. параметр, который показывает, через сколько периодов полуэлиминации вводят поддерживающую дозу, то можно показать, что:

Таким образом, границы колебаний стационарной концентрации, как и она сама, зависят только от величины вводимой дозы и количества периодов полуэлиминации, проходящих между очередными введениями лекарства.

Рассмотрим теперь процесс элиминации лекарства после прекращения его введения в организм. Примем стационарный уровень лекарства за 100%. Тогда:

через 1 период полуэлиминации останется ½100%=50% и выведется 50% лекарства;

через 2 периода полуэлиминации останется ½50%=25% и выведется 50+25=75% лекарства;

через 3 периода полуэлиминации останется ½25%=12,5% и выведется 50+25+12,5=87,5%;

через 4 периода полуэлиминации останется ½12,5%=6,25% и выведется 50+25+12,5+6,25=93,75%

Таким образом, как нетрудно заметить, процесс элиминации лекарства является зеркальным отражением процесса достижения стационарной концентрации и тоже занимает 4-5 периодов полуэлиминации, не зависимо от уровня концентрации лекарства в равновесную фазу и величины вводимых ранее доз (см. схему 11).