Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТФКП.doc
Скачиваний:
2
Добавлен:
15.11.2019
Размер:
998.4 Кб
Скачать

6. Обобщенные степенная и показательная функции

, (8)

где a – любое комплексное число;

, (9)

где .

В силу многозначности логарифма, выражение, определяемое равенством (11), многозначно. Его главным значением называется то, которое получается при подстановке в правую часть (11) вместо Ln a.

Пример 1. ,

Пример 2.

.

§3. Производная функции комплексного переменного. Аналитические функции. Понятие о конформном отображении

Пусть однозначная функция определена в некоторой области и пусть точки и принадлежат области D.

Определение. Если существует конечный предел отношения , когда по любому закону стремится к нулю, то:

1) этот предел называется производной функции в точке и обозначается символом :

; (1)

2) в этом случае функция называется дифференцируемой в точке .

Все правила и формулы дифференцирования функции действительного переменного остаются в силе и для функций комплексного переменного.

Теорема. Для того, чтобы функция была дифференцируема в точке , необходимо и достаточно, чтобы:

1) действительные функции и были дифференцируемы в точке ;

2) в этой точке выполнялись условия

, (2)

называемые условиями Коши-Римана (С-R) или Даламбера-Эйлера.

При выполнении условий (C-R) производная функции может быть найдена по одной из следующих формул:

(3)

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Однозначная функция называется аналитической в точке , если она дифференцируема в некоторой окрестности точки .

Определение. Функция называется аналитической в области, если она дифференцируема в каждой точке этой области.

Аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши-Римана для всех точек этой области.

Пример. Выясним, является ли аналитичной функция .

Так как , имеем . Отсюда

, .

Проверим выполнение условий (C-R):

,

.

Условия (C-R) выполняются при любых конечных х и у, значит функция аналитична во всей комплексной плоскости (кроме ).●

Определение. Точки, в которых является аналитической, называются регулярными (правильными). Если аналитична в , за исключением некоторых точек, то эти точки называются особыми. Точка называется изолированной особой точкой, если вокруг нее можно описать круг, не содержащий других особых точек.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в области и . Функция отобразит точку плоскости в точку плоскости , кривую , проходящую через точку в кривую , проходящую через .

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точками и к бесконечно малому расстоянию между их прообразами и . Поэтому величину можно рассматривать геометрически как коэффициент растяжения (если ) в точке при отображении области в области , осуществляемом функцией . В каждой точке области в каждом направлении коэффициент растяжения будет свой.

Для аргумента производной можно записать

,

где и это углы и , которые векторы и образуют с действительной осью.

Пусть и углы, образованные касательными к кривой и в точках и с действительной осью. Тогда при , а , поэтому определяет угол, на который нужно повернуть касательную к кривой в точке , чтобы получить направление к касательной к кривой в точке .

Таким образом, геометрический смысл модуля и аргумента производной состоит в том, что при отображении, осуществляемом аналитической функцией, удовлетворяющей условию , модуль k определяет коэффициент преобразования подобия бесконечно малого линейного элемента в точке , а аргумент производной определяет угол поворота этого элемента.

Если рассмотреть две кривые и , и , то углы и между их касательными, вообще говоря, неравные.

Определение. Отображение области на область , обладающее свойствами постоянства растяжений ( ) в любом направлении и сохранения (или консерватизма) углов между двумя кривыми, пересекающимися в точке , называется конформным (подобным в малом).

Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .

Например, функция задает отображение, которое является конформным во всех точках, кроме точки (0; 0).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]