Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lin_algebra_analit_geom.doc
Скачиваний:
6
Добавлен:
14.11.2019
Размер:
1.13 Mб
Скачать

6.Векторная геометрия

В геометрическом векторном пространстве стандартный базис состоит из векторов, имеющих единичную длину, расположенных по координатным осям и направленных в положительную сторону соответствующих координатных осей. Векторы, соответствующие осям 0x, 0y, 0z, обозначают соответственно , , и называют основными или базовыми ортами.

Проекция вектора на прямую – это вектор, начало и конец которого есть проекции начала и конца вектора на эту прямую.

В разложении вектора = (1, 2, 3) по базису: = 1 + 2 + 3 слагаемые являются проекциями вектора на соответствующие координатные оси.

Векторы, параллельные одной прямой, называются коллинеарными; параллельные одной плоскости – компланарными.

Перпендикулярные векторы называют ортогональными.

Если = (a, b, c) и известны координаты точки A(x1, y1, z1), то координаты точки B(x2, y2, z2) находим сложением этих координат: x2 = x1 + a, y2 = y1 + b, z2 = z1 + c. Аналогично координаты начала вектора получаются из координат конца вычитанием координат вектора.

Пример 1.6.1. Найти координаты вершины D параллелограмма ABCD, если заданы координаты А(2, –1, 1), В(4, 2, 0), С(–3, 1, –2).

Р ешение. Изобразим параллелограмм ABCD на рисунке (не стараясь согласовывать положение вершин с их координатами), чтобы было наглядно видно, какие векторы использовать в вычислениях. Замечаем, что

= = (–3 – 4, 1 – 2, –2 – 0) = (–7, –1, –2),

и получаем координаты D(2 – 7, –1 – 1, 1 – 2), или D(–5, –2, –1).

Скалярное произведение

Скалярное произведение векторов и определяется формулой:

= cos, (1)

где  – угол между векторами и .

Свойства скалярного произведения:

  1. = .

  2. = .

  3. = .

  4. .

  5. Критерий ортогональности векторов: .

  6. Если = (a1, a2, a3), = (b1, b2, b3) то = a1b1 + a2b2 + a3b3. Такая же формула с двумя слагаемыми для плоского случая.

Пример 1.6.2. Найти косинус угла  между векторами = (2, –1, 3), и = (3, 2, –2).

Решение. Из формулы (1) получаем cos = ;

= = –2;

;

;

cos = .

Пример 1.6.3. Найти площадь треугольника АВС, если заданы координаты вершин А(2, –1, 3), В(3, 2, –2), С(0, 3, 1).

Решение. Площадь находим по формуле , где  – угол между АВ и АС. Вводим векторы

= (3 – 2, 2 – (–1), –2 – 3) = (1, 3, –5);

= (0 – 2, 3 – (–1), 1 – 3) = (–2, 4, –2).

cos находим, как в примере 1.6.2:

= –2 + 12 + 10 = 20;

; ;

cos = ;

;

.

Замечание. При вычислении sin сокращение не производилось специально, чтобы упростить вычисления на последнем шаге.

Векторное произведение

Упорядоченная тройка векторов , , пространства называется правой, если при совмещении их начал в одной точке из конца вектора поворот от к наблюдается против часовой стрелки. В противном случае тройка называется левой. Эта характеристика называется ориентацией тройки векторов.

Если векторы в тройке сдвинуть по кругу, то ориентация не изменится. Если же поменять местами два вектора, то ориентация изменится на противоположную.

Векторным произведением векторов и называется вектор =  такой, что:

(a) , где  – угол между векторами;

(b) , ;

(c) векторы , , образуют правую тройку.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]