Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Выпуклый_анализ.doc
Скачиваний:
36
Добавлен:
12.11.2019
Размер:
1.02 Mб
Скачать

3. Производные по направлениям и субдифференциалы

Выпуклые функции в общем случае могут быть недифференцируемы в обычном смысле (например, f(x) = |x| недифференцируема в точке х = 0).

Определение. Производной по направлению p(p Rn, p 0) функции f в точке х называется и обозначается f ’(x, p) или (х).

Отметим, что если f(x) дифференцируема в точке х, то f ’(x, p) = (f ’(x),p), где

f ’(x) = - градиент функции f в точке х.

Теорема Радемахера. Всякая выпуклая функция является дифференцируемой почти всюду (за исключением множества лебеговой меры нуль) на открытом множестве Х dom f.

Теорема. Пусть f(x) – выпуклая функция на Rn. Тогда для любой точки х int(dom f) существует и конечна производная функции f по любому направлению pRn.

Для выпуклых функций можно определить понятие субградиента, которое заменяет обычное понятие градиента гладкой функции в задачах на экстремум.

Определение. Вектор g называется субградиентом функции f в точке х0 dom f, если

f(x) – f(x0) (g, x – x0) для любых х Rn.

Множество всех субградиентов функции f в точке х0 называется субдифференциалом функции f и обозначается f(x0).

Замечание. В определении субградиента не требуется выпуклости функции и можно вычислить субградиент в заданной точке и для произвольной функции. Однако для выпуклой функции, определённой на открытом выпуклом множестве, всегда существует хотя бы один субградиент в любой точке множества, т.е. её субдифференциал является непустым множеством. Для произвольной функции это не так.

Геометрический смысл понятия субдифференциала

Можно показать, что если f(x) выпуклая функция, то

1) вектор g f(x0) является внешней нормалью опорной гипреплоскости к множеству уравня M(f) функции f в точке х0, где M(f) = {x Rn| f(x) f(x0)};

2) вектор (g, - 1)Rn+1, где g f(x0), является внешней нормалью опорной гиперплоскости, проведённой к надграфику функции f в точке (x0, f(x0)) (в частности, если x R, то g есть тангенс угла наклона опорной прямой, проведённой к надграфику функции f);

3) для функции f: R R f(x) = [f ’(x – 0), f ’(x + 0)].

Свойства субдифференциала выпуклой функции

Пусть f(x) – выпуклая функция, определённая на открытом выпуклом множестве Х dom f. Тогда справедливы следующие утверждения.

1. Субдифференциал f(x0) – непустое выпуклое, замкнутое и ограниченное множество для любой точки х0 Х.

2. Если f(x) – дифференцируемая функция в точке х0 Х, то

f(x0) = {f ’(x0)}.

3. Пусть h(x) = αf(x), α > 0, тогда

h(x) = αf(x) для x X

4. Пусть f(x) = f1(x) + f2(x), где f1(x) и f2(x) – выпуклые на Х функции, тогда

f(x) = f1(x) + f2(x) для х Х.

5. Пусть функции f1, f2, … ,fm – выпуклые функции, определённые на Х, и f(x) = fi(x). Тогда

f(x) = conv для х Х,

где I(x) = {i = : fi(x) = f(x)}.

6.Производная функции f в произвольной точке по любому направлению p Rn, p 0 существует и

f ’(x, p) = (g, p).

Замечание. Требование открытости множества Х существенно. Если Х – произвольное выпуклое множество, то в его граничных точках свойства 1 – 6 будут выполняться только при некоторых дополнительных предположениях.

В общем случае вычисление субдифференциала f(x) задача непростая. Один из инструментов решения этой задачи даёт теорема Кларка.

Теорема Кларка. Пусть x0 int dom f, f(x) – выпуклая функция на Rn, Q – множество точек пространства Rn, в которых функция f(x) недифференцируема, {xk} – произвольная последовательность, сходящаяся к x0(xk Q для любого k), такая, что последовательность сходится. Тогда субдифференциал функции f(x) в точке x0 совпадает с выпуклой комбинацией всех пределов последовательностей для всевозможных последовательностей {xk}, т.е.

f(x0) = Conv .

Примеры

1. Пусть f(x) = |x|. Требуется вычислить f(x). Если х > 0, то f(x) = x, f ’(x) = 1, следовательно,

f(x) = Conv{1} = {1}. Аналогично для x < 0 f(x) = Conv{-1} = {-1}. Пусть х = 0. Заметим, что это единственная точка, в которой функция f(x) недифференцируема. Тогда

= {-1, +1},

f(0) = Conv{-1, +1} = [-1, 1].

2. Пусть f(x1, x2) = |x1| + |x2|. Требуется вычислить f(x).

З аметим, что f(x1, x2) =

Функция f(x1, x2) дифференцируема в любой точке пространства, кроме точек, для которых выполнено одно из условий: |x1| = 0 или |x2| = 0, т.е. Q = {x R2: x1 = 0} {x R2: x2 = 0}.

Пусть x Q, тогда f ’(x1, x2) = , если x1 > 0, x2 > 0;

f ’(x1, x2) = , если x1 > 0, x2 < 0;

f ’(x1, x2) = , если x1 < 0, x2 > 0;

f ’(x1, x2) = , если x1 < 0, x2 < 0.

На Рис. 13 представлены области, в которых функция дифференцируема и значения градиентов одинаковы.

Для точек х0 Q субдифференциал состоит из единственного элемента, совпадающего с градиентом функции в этой точке.

Пусть х0 Q, причём х0 лежит на оси Ох1 и х10 > 0. Тогда

= поэтому

Аналогично вычисляется субдифференциал для других точек множества Q. Таким образом,

Заметим, что некоторые свойства субдифференциалов, приведённые выше, легко получить как следствие из теоремы Кларка.