Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
углеводы.doc
Скачиваний:
26
Добавлен:
12.11.2019
Размер:
4.73 Mб
Скачать

Метаболизм глюкозы в клетке

Первая реакция, в которую вступает глюкоза в клетке, является единственной. Это реакция фосфорилирования глюкозы за счёт АТФ. Фермент, катализирующий эту реакцию, есть в любой клетке. Он называется гексокиназа (ГК).

Биологический смысл гексокиназной реакции:

1. Сделать молекулу глюкозы более способной к химическим реакциям, ослабить в ней химические связи, дестабилизировать её ("расшатать").

2. Связать, задержать глюкозу в клетке, чтобы она не смогла выйти обратно в кровь (глюкозо-6-фосфат не способен проходить через клеточную мембрану).

Чтобы связанная молекула могла выйти из клетки, глюкозо-6-фосфат должен превратиться обратно в глюкозу. Фермент, катализирующий обратную реакцию (превращение глюкозо-6-фосфата обратно в глюкозу), называется глюкозо-6-фосфатаза. Он гидролизует глюкозо-6-фосфат до глюкозы и Н3РО4 (Фн), то есть катализирует обходной обратный путь гексокиназной реакции. Глюкозо-6-фосфатаза есть в печени, почках и слизистой оболочке кишечника.

3. Гексокиназа - это ключевой фермент всего метаболизма глюкозы. Он лимитирует (ограничивает) скорость всех путей метаболизма глюкозы в клетке. Гексокиназа всегда работает с максимальной скоростью.

Только в печени есть ещё один фермент, катализирующий реакцию превращения глюкозы в глюкозо-6-фосфат. Это изофермент гексокиназы - глюкокиназа. "На высоте пищеварения", когда концентрация глюкозы в воротной вене во много раз возрастает, глюкокиназа работает очень интенсивно. Следовательно, утилизация глюкозы клетками печени "на высоте пищеварения" возрастает при подключении дополнительного пути метаболизма (работа глюкокиназы).

Регуляторная роль гексокиназы: этот фермент угнетается избытком своего продукта - глюкозо-6-фосфата. Если по какой-то причине дальнейшее использование глюкозо-6-фосфата замедляется (его концентрация при этом возрастает), то автоматически тормозится гексокиназная реакция. Поэтому в такой ситуации замедляется использование в клетке глюкозы в целом.

После образования глюкозо-6-фосфата начинается разветвление дальнейших путей метаболизма глюкозы. Таких главных путей три.

1. Гексозомонофосфатный путь распада углеводов (ГМФ-путь)

2. Гексозобисфосфатный путь распада углеводов (ГБФ-путь).

3. Синтез гликогена.

Есть ещё минорные пути (в них используется небольшая доля глюкозы, поступающей в клетку). Эти пути не играют энергетической роли, а используются для построения олиго- и полисахаридных цепей гликопротеинов, то есть выполняют структурную роль.

Г Б Ф - П У Т Ь.

(Гексозобисфосфатный путь распада углеводов)

БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ГБФ-ПУТИ.

1. Это главный путь распада углеводов до конечных продуктов. Во многих клетках это - единственный путь. Так распадается 70-75% глюкозы, которая поступает в клетку.

2. Только ГБФ-путь дает клетке энергию в виде АТФ. Это основной источник получения энергии в клетке.

3. Это самый длинный путь распада углеводов.

ГБФ-путь делим на 3 этапа.

1-й этап протекает в цитоплазме, дает 8 молекул АТФ при распаде 1 молекулы глюкозы или 9АТФ при распаде одного глюкозного фрагмента гликогена. Заканчивается образованием 2-х молекул пирувата (ПВК).

2-й и 3-й этапы - (исключительно аэробные!) в митохондриях с обязательным участием кислорода. 2-й этап ГБФ-пути называется "окислительное декарбоксилирование пирувата". Пируват превращается в ацетил-коэнзим А. Молекула ацетил-коэнзима А вступает в 3-й этап. Этот 3-й этап называется циклом трикарбоновых кислот (ЦТК). В этом цикле АцКоА полностью расщепляется до СО2 и Н2О. 2-й и 3-й этапы дают 30 АТФ в расчете на одну молекулу глюкозы.

1-й этап проходит 10 промежуточных стадий. В ходе первой части этого этапа молекула глюкозы расщепляется пополам до 2-х молекул фосфоглицеринового альдегида (ФГА).

ОСОБЕННОСТИ ПЕРВОЙ ЧАСТИ 1-ГО ЭТАПА:

Гексокиназа работает, чтобы ослабить прочную молекулу глюкозы:

2-я реакция - изомеризации:

На 3-й стадии фруктозо-6-фосфат еще более ослабляется фосфофруктокиназой (ФФК) и образуется фруктозо-1,6-бисфосфат:

Фосфофруктокиназа - это ключевой фермент ГБФ-пути. Он является "пунктом вторичного контроля". Избыток АТФ и избыток цитрата сильно ингибируют ФФК. Из-за угнетения ФФК накапливаются глюкозо-6-фосфат (Г-6-Ф) и фруктозо-6-фосфат(Ф-6-Ф).

глюкозо-6-фосфат ингибирует гексокиназу, уменьшая утилизацию глюкозы клеткой и одновременно активирует гликогенсинтетазу.

Если нет избытка АТФ и цитрата, а есть избыток АДФ, то АДФ активирует ФФК, и тогда скорость всего ГДФ-пути лимитируется опять гексокиназой.

В результате фосфофруктокиназной реакции молекула фруктозо-1,6-бисфосфата распадается на 2 триозы при участии фермента альдолазы (4-я реакция):

5-я реакция:

В следующую (шестую) реакцию ГБФ-пути вступает только ФГА. В результате уменьшается его концентрация и равновесие 5-й реакции сдвигается в сторону образования ФГА. Постепенно весь ФДА переходит в ФГА, и поэтому количество АТФ, синтезировавшееся в последующих реакциях ГБФ-пути, мы учитываем в расчете на 2 молекулы ФГА и других промежуточных метаболитов, которые из него образуются.

В 1-й части 1-ого этапа (от глюкозы до ФГА) расходуется 2 молекулы АТФ: одна - в гексокиназной реакции, другая - в фосфофруктокиназной (3-я реакция первого этапа ГБФ-пути).

2-я часть первого 1-го этапа начинается с окисления ФГА до ФГК (фосфоглицериновой кислоты) в 6-й реакции.

Эта реакция катализируется ферментом "глицеральдегидфосфатдегидрогеназа". Отщепляемый водород передается на НАД с образованием НАДН2. Энергии, которая выделяется при этом окислении, хватает и на то, чтобы одновременно обеспечить присоединение фосфата к альдегидной группе. Присоединяется фосфат макроэргической связью. В результате образуется 1,3-дифосфоглицериновая кислота (1,3-бисфосфоглицерат).

7-я реакция: субстратное фосфорилирование.

Фосфат с макроэргической связью передается на АДФ с образованием АТФ. В результате 7-й стадии в молекуле фосфоглицериновой кислоты остается 1 остаток фосфорной кислоты.

8-я реакция: Фосфат переносится из 3-го во второе положение и образуется 2-фосфоглицериновая кислота.

9-я реакция:

От 2-фосфоглицериновой кислоты отнимается Н2О. Это приводит к перераспределению молекулярной энергии. В результате на фосфате во втором положении накапливается энергия и связь становится макроэргической. Получается фосфоенолпируват(ФЕП).

10-я реакция: Субстратное фосфорилирование. Фосфат переносится на АДФ с образованием АТФ. ФЕП переходит в ПВК (пировиноградную кислоту).

На этом 1-й этап ГДФ-пути заканчивается, ПВК уходит в митохондрию и вступает во второй этап ГДФ-пути.

Итоги 1-го этапа: 10 реакций, из которых первая, третья и десятая реакции необратимы. Сначала расходуется 2 АТФ на 1 молекулу глюкозы. Потом окисляется фосфоглицероальдегид. Энергия реализуется в ходе 2-х реакций субстратного фосфорилирования: в каждой из них образуется по 2 АТФ. Следовательно, на каждую молекулу глюкозы (на 2 молекулы ФГА) получается 4 АТФ путем субстратного фосфорилирования.

Суммарно все 10 стадий можно описать следующем уравнением:

С6Н12О6 + 2Н3РО4 + 2АДФ + 2НАД -----> 2С3Н4О3 + 2АТФ + 2Н2О + 2НАДН2

НАДН2 по системе митохондриального окисления передает водород на кислород воздуха с образованием Н2О и 3 АТФ, но 1-й этап протекает в цитоплазме и НАДН2 не может проходить через мембрану митохондрий.

Существуют челночные механизмы, обеспечивающие этот переход НАДН2 через митохондриальную мембрану - малат-аспартатный челнок и глицерофосфатный челнок

В расчете на одну молекулу глюкозы образуется 2НАДН2.

В дополнение к 2 АТФ, получаемым на 1-м этапе путем субстратного фосфорилирования, образуется еще 6 АТФ с участием кислорода, итого - 8 молекул АТФ. Столько АТФ образуется в расчете на каждую расщепленную до ПВК молекулу глюкозы в ходе первого этапа ГБФ-пути.

Если эти 8 АТФ добавить к 30 молекулам АТФ, которые образуются на 2-м и 3-м этапах, то суммарный энергетический итог всего ГБФ-пути составит 38 АТФ на каждую молекулу глюкозы, расщепленную до СО2 и Н2О. В этих 38 АТФ заключено 65 процентов энергии, которая выделилась бы при сжигании глюкозы на воздухе. Это доказывает очень высокую эффективность работы ГБФ-пути.

Из 38 АТФ основная их часть образуется на 2-м и 3-м этапах. Каждый из этих этапов абсолютно необратим и требует обязательного участия кислорода, так как окислительные стадии этих этапов сопряжены с митохондриальным окислением (без него невозможны). Весь ГБФ-путь от глюкозы или гликогена до СО2 и Н2О называют: АЭРОБНЫЙ РАСПАД УГЛЕВОДОВ.

Ключевые ферменты первого этапа ГБФ-пути: ГЕКСОКИНАЗА и ФОСФОФРУКТОКИНАЗА.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]