Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Резистор.docx
Скачиваний:
4
Добавлен:
12.11.2019
Размер:
123.24 Кб
Скачать

Резистор (англ. resistor, от лат. resisto — сопротивляться) — структурный элемент электрической цепи, основной функциональным свойством которого является определённое (номинальное) активное сопротивление. Ток и напряжение в резисторе подчиняются закону Ома:

Схема включения резистора.

где

  • U — напряжение между выводами резистора,

  • I — ток, протекающий через резистор,

  • R — основной параметр резистора (сопротивление протеканию электрического тока, поэтому часто применяют исконно русское названиесопротивление и далее , читая резистор, надо представлять именно абстрактное электрическое сопротивление, как параметр, если речь не идёт о радиокомпаненте (как изделии) резисторе).

В радиоэлектронной аппаратуре нередко резисторами являются более половины элементов.

Типы резисторов

Условные обозначения резисторов: а) постоянные; б) переменные; в) переменный с дополнительными отводами; г) подстроечные; д), е) переменные с общей ручкой; ж) переменный с выключателем от крайнего положения; з) варистор; и) терморезистор; к) фоторезистор.

Выделяются следующие функциональные виды резисторов:

Постоянные резисторы

резисторы, обладающие неизменным сопротивлением (в границах погрешности).

Переменные и подстроечные резисторы (реостаты)

резисторы сопротивление которых изменяется механически, посредством рукоятки или другого органа управления (переменные), либо посредством вставляемого в шлиц инструмента.

Варисторы

резисторы, сопротивление которых зависит от приложенного напряжения.

Терморезисторы и термисторы

резисторы, у которых используется зависимость сопротивления от температуры, с положительным (терморезисторы) или отрицательным (термисторы) ТКС.

Фоторезисторы

резисторы, обладающие зависимостью сопротивления от освещения.

Как правило, резисторы имеют два вывода, однако переменные и подстроечные резисторы имеют таже отвод от бегунка регулятора а также могут иметь серию отводов из средней части.

[редактировать]

Характеристические параметры резисторов

Основными параметрами резисторов является номинальное сопротивление, измеряемое в Омах и максимальная рассеиваемая мощность.

Номинальное сопротивление несёт главное функциональное значение для резистора, именно его значением определяется его применение в электрическом устройстве( поскольку рассеивать на нём мощность допустимо и гораздо меньшую указанной). Выпускаемые номиналы как определяются стандартизированным рядом (E6, E12, E24 и т. п.) и могут быть от десятых долей Ом, до сотен мегаОмов. Реальное значение сопротивления может несколько отличаться от номинального. Предел этого отклонения обозначается в процентах относительно номинала и определяется классом точности. Стандартный ряд классов точности — 20%, 10%, 5%, 2%, 1%, 0,5%.

Условные обозначения максимальной рассеиваемой мощности.

Максимальная рассеиваемая мощность измеряется в ваттах определяет предельный ток и напряжение на резисторе, что ограничивает его применение в сильноточных цепях. Стандартно резисторы выпускаются с максимльной рассеиваемой мощностью в 0,063 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт, 10 Вт, 20 Вт. Для обозначения мощности свыше 0,125 Вт на схемах существуют специальные обозначения.

У особых видов резисторов также имеют значения специальных параметорв, таких как температурный коэффициент сопротивления и т. п. Также для некоторых приложений могут быть важными параметрами ёмкость и индуктивность.

[редактировать]

Устройство и разновидности

Функциональные качества резисторов в первую очередь определяются физическими свойствами материала и размерами токопроводящей части. В зависимости от материала резисторы разделяют на металлические, углеродистые, жидкостные, керамические и полупроводниковые. По форме — на плёночные (получаемые осаждением токопроводящего материала на изолирующую подложку, проволочные, ленточные, пластинчатые.оп оп

[редактировать]

Типы корпуса

Исполнение корпусов резисторов (как и многих других деталей) может подразумевать различные способы монтажа — установка на плату под отверстия или на поверхность, пайку на провода, под клеммы и др, а также они могут быть изготовлены в составе микросхем и микросборок.

[редактировать]

Поверхностный монтаж

Резисторы поверхностного монтажа стандартно выпускаются в корпусах типоразмеров 0402 (1005), 0603 (1608), 0805 (2012), 1206 (3216) и т. п.

монтаж в отверстия на плату подразумевает

[редактировать]

Монтаж на провода

Наиболее распространён монтаж на провода переменных резисторов, которые закрепляются на лицевой панели прибора и резисторов, выступающих в роли датчиков (термо-, фоторезисторы).

[редактировать]

Способы соединения

Способы соединения резисторов. Простые: а) последовательное, б) параллельное. Сложные: в) параллельно-последовательное, г) последовательно-параллельное, д) не раскладывающееся на простые.

Существует множество способов соединения резисторов, с образованием как двухполюсников так и трёх-, четырёхполюсников и других многополюсников.

Резистор является простейшим двухполюсником. Соединяя резисторы последовательно, параллельно, а также более сложными способами можно получить другие схемы двухполюсников. При этом цепь из соединённых в двухполюсник резисторов также функционально идентична резистору, сопротивление которого зависит от способа соединения и сопротивлений входящих в него резисторов.

[редактировать]

Последовательное соединение

Последовательное соединение (см пункт а на рисунке) состоит из двух и более резисторов, включенных так, что они составляют цепочку, концы которой есть полюсы. В таком соединении весь ток проходит последовательно через все резисторы, а напряжение разделяется согласно сопротивлениям. Ток и напряжение в таком соединении подчиняется следующим законам:

откуда следует, что сопротивление всей цепи будет выражаться формулой:

Рассеиваемая мощность на каждом резисторе при этом будет составлять:

kik

[редактировать]

Параллельное соединение

Параллельное соединение (см. пункт б на рисунке) состоит из двух и более резисторов, каждый из которых подключен к обоим концам цепи. Напряжение в таком соединение приложено ко всем резисторам, ток — распределяется по резисторам. Их можно выразить следующими отношениями:

Сопротивление цепи параллельных резисторов, таким образом, будет выражаться формулой:

Рассеиваемая на каждом резисторе мощность, соответственно:

Резистор - это самый распространенный электронный компонент, название которого произошло от английского слова «resistor» и от латинского «resisto» - сопротивляюсь. Основным параметром резистора считается сопротивление, которое характеризуется его способностью в препятствии протекания электрического тока. Единицами сопротивления у резисторов являются – Омы (Ω), Килоомы (1000 Ом или 1КΩ) и Мегаомы (1000000 Ом или 1МΩ).

Практически ни одна схема не обходиться без резисторов. С помощью подбора соответствующих величин резисторов и их соединений, происходит нужное распределение электрического тока в цепи.

Характеристики резистора

Кроме предельного сопротивления, резисторы обладают рядом других физиотехнических показателей, которые имеют большое значение в его применении.

Среди основных параметров выделяются такие характеристики резистора, как сопротивление по номинальному значению и его возможное отклонение, рассеиваемая мощность, предельное рабочее напряжение, максимальная температура, температурный коэффициент сопротивления, частотный отклик и шумы. Рассмотрим некоторые из них.

Температурный коэффициент сопротивления ТКС

Температурный коэффициент сопротивления (ТКС) определяет относительное изменение величины сопротивления резистора при изменении температуры окружающей среды на 1 ° по Цельсию. ТКС может быть как положительным, так и отрицательным. Если резистивная пленка имеет относительно большую толщину, то она обладает свойствами объемного тела, сопротивляемость которого с увеличением температуры становится больше. Если же резистивная пленка имеет относительно небольшую толщину, то она состоит как бы из небольших «островков», расположенных отдельно друг от друга, и сопротивление такой пленочной структуры с увеличением температурных значений становится меньше, так как взаимодействие между отдельными «островками» улучшается. Для непроволочных резисторов, применяемых в радиоэлектронике и телевизионной промышленности, температурный коэффициент сопротивления не больше ±0,04 - 0,2 %, у проволочных деталей -±0,003 - 0,2 %.

Рассеиваемая мощность резистора

Номинальная мощность рассеивания, или рассеиваемая мощность резистора показывает предельно значимую мощность, которую сопротивление может рассеивать при долговременной электрической нагрузке, атмосферном давлении и температуре в нормальных значениях. Непроволочные резисторы подоазделяются на мощность по номиналу от 0,05 до 10 Вт, а сопротивления проволочного типа от 0,2 до150 Вт. На электpосхемах рассеиваемая мощность резистора выделяется условно пунктиром на обозначении сопротивления для мощностей меньше 1 Вт и pимскими цифрами на обозначении сопротивления для мощности больше 1 Вт. Номинальная мощность рассеивания этих деталей должна быть на 20—30 % больше такого показателя, как рабочая рассеиваемая мощность резистора

Максимальное напряжение резистора

Предельное или максимальное напряжение резистора - это предельно возможное напряжение, подведенное к выводам сопротивления, которое не допускает превышения показателей техусловий (ТУ) на параметры электричества. По- другому, максимальное напряжение резистора – предельно допустимая величина, которая может быть приложена к резистору. Этот показатель выводится для обычных пределов работы детали и напрямую зависит от линейных размеров резистора, шага спиральной нарезки, температурных показателей, давления эксплуатационной среды и давления атмосферы. Чем выше температурные показатели и меньше давление атмосферы, тем больше шансов для пробоя теплового или электрического типа и выхода резистора из строя.

Максимальная температура резистора

Одной из характеристик резистора является такой показатель, как максимальная температура резистора, напрямую зависит от мощности детали. Получается, что при увеличении мощности, которая выделяется в сопротивлении, увеличивается температура резистора, что может привести к его поломке. Во избежание этого, необходимо уменьшить температуру резистора. Это можно достичь укрупнением габаритов сопротивления.. Для всех типов сопротивлений определена максимальная температура резистора, превышение которой чревато выходом детали из строя.

Температурный показатель сопротивления находится в прямой зависимости и от температуры окружающего воздуха. Если этот показатель достигает большого значения, то температурный показатель сопротивления может стать выше максимальной температуры резистора, что крайне нежелательно. Чтобы этого не случилось, нужно снизить мощность, которая выделяется в резисторе.

Частотный отклик резистора

Значение такой характеристики, как частотный отклик резистора, связано с определением значения максимального сопротивления и минимальной ёмкости. При прохождении тока высокой частоты сопротивление стремится к проявлению реактивных свойств в зависимости от конструктивного исполнения – доминируют либо емкостные, либо индуктивные значения.

Если в одно и то же время дискретно уменьшать и  значение сопротивления и значение емкости, то можно вызвать быстрый демпфированный частотный отклик резистора, который позволит определить как максимальное сопротивление, так и минимальную емкость. При этих значениях не возникает колебаний и в то же время достигается мгновенная стабилизация выходного напряжения. Но в теории это рассматривается , как частный случай. На высоких частотах резистор начинает проявлять реактивные свойства в зависимости от конструктивного исполнения - либо преимущественно емкостные, либо индуктивные.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]