Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кривые 2-го порядка..doc
Скачиваний:
1
Добавлен:
27.09.2019
Размер:
939.52 Кб
Скачать

3.Эксцентриситет эллипса

Рассмотрим эллипс с фокусами в точках F1 и F2 , большой полуосью которого является [A1A2].

Определение. Эксцентриситетом эллипса называется число, равное .

Так как , то ε > 0. Для окружности => ε = 0.

Пусть эллипс задан уравнением , тогда => => => . => Эксцентриситет определяется отношением полуосей эллипса.

Рис.3.

При ε = 0 получаем , что указывает на то, что в этом случае

эллипс является окружностью. При стремлении ε к единице отношение полуосей становится меньше и стремится к нулю. Зафиксируем значение большой полуоси эллипса и пусть ε → 0. Изменение формы эллипса, в этом случае показано на Рис.3.

ВЫВОД. Эксцентриситет характеризует степень вытянутости эллипса вдоль большой оси.

4.Параметрические уравнения эллипса

Построим на плоскости две окружности с центрами в начале координат и радиусами и . Проведём луч из начала координат, и пусть он пересечёт первую окружность в точке N1, а вторую ─ в точке N2. (Рис.4.)

Рис.4.

Через точку N1 Проведём прямую ℓ1|| (Оу), а через точку N2 ─ прямую ℓ2|| (Ох). Пусть М(х;у) = ℓ1 ∩ ℓ2 . Обозначим через α = А1ОN1, тогда

(6)

Разделив первое равенство системы (6) на , а второе на , после возведения полученных равенств в квадрат и сложения их получаем:

=> Точка М(х;у) принадлежит эллипсу.

Соотношения (6) называют параметрическими уравнениями эллипса.

5.Построение точек эллипса

Рис.5.

Построить эллипс с полуосями и можно на основании параметрических уравнений эллипса. Этапы построения следующие:

а) Строим две соосные окружности с радиусами и .

б) Проводим произвольный луч с началом в центре окружностей.

в) Точки эллипса М получаем как точки пересечения прямой параллельной оси (Ох) и проходящей через точку пересечения луча с окружностью радиуса с прямой, параллельной оси (Оу) и проходящей через точку пересечения луча с окружностью радиуса . (См. Рис.5).

Лекция №2

§2 Гипербола

1. Определение гиперболы и её уравнение

Определение. Гиперболой называется множество всех точек плоскости, для каждой из которых абсолютная величина разности расстояний до двух фиксированных точек плоскости F1 и F2 есть величина постоянная, равная 2a < ǀF1F2ǀ=2c.

Точки F1 и F2 называются фокусами гиперболы, а F1F2│= 2с ─ фокальным расстоянием.

Пусть на плоскости даны две точки F1 и F2. Для того чтобы составить уравнение гиперболы на плоскости введём ортонормированную систему координат, начало которой поместим с середину отрезка [F1F2].

M

Рис.6.

Ось Ох расположим таким образом чтобы точки F1 и F2 принадлежали этой оси. (Рис.6)

В этом случае фокусы гиперболы принимают следующие координаты F1(c;0) и F2(-c;0). Пусть М(х;у) ─ произвольная точка эллипса. Тогда по определению││МF1│- │МF2││ = 2a. (1)

По формуле вычисления расстояния между точками имеем: ; . Таким образом из (1) =>

. Запишем полученное выражение в виде и возведём в квадрат. В результате, после приведения подобных получаем . Для того чтобы освободиться от корня возведём последнее выражение в квадрат. В результате после элементарных преобразований имеем: . (2)

Учитывая, что и , обозначим

и запишем (2) виде: . После деления полученного уравнения на получаем, что если точка М(х;у) принадлежит гиперболе, то её координаты удовлетворяют уравнению

(4)

Покажем теперь, что если координаты некоторой точки М111) удовлетворяют уравнению (4), то точка М1 принадлежит гиперболе.

Пусть для точки М111) справедливо равенство (5)

Из (5) следует: (6)

Вычислим

=> .

Аналогично, если провести подобные преобразования для , получим .

Заметим, что из (6) следует, что .

Рассмотрим случай, когда x > 0. В этом случае и, так как ,то и . => , то есть точка М1 принадлежит гиперболе.

Пусть теперь х < 0. В этом случае , откуда следует, что и . Таким образом, и . В результате получаем, что точка М1 принадлежит гиперболе , так как .

Таким образом, уравнение (6) является уравнением гиперболы, которое называется каноническим уравнением гиперболы.

[MF1] ─ называется первым фокальным радиусом гиперболы; . [MF2] ─ называется вторым фокальным радиусом гиперболы; .

Заметим, => такая гипербола называется равнобочной.