Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
спец часть отсортированная.docx
Скачиваний:
13
Добавлен:
27.09.2019
Размер:
189.42 Кб
Скачать
  1. Получение гаплоидных растений методами биотехнологии. Эмбриокультуры. Клеточная селекция. Отбор растительных клеток с требуемыми признаками.

Культуры гаплоидных клеток растений, их значение для генетики и селекции

Большой интерес для селекционеров представляют гаплоидные растения. Гаплоиды получают двумя способами.

Первый способ классический – отдаленная гибридизация, когда в зиготе отдаленного гибрида хромосомы одного из видов элиминируют.

Второй способ основан на методиках культивирования in vitro, где из неоплодотворенных половых клеток с редуцированным набором хромосом можно регенерировать целые растения. Обычно они стерильны, так как у них нарушено формирование мужских и женских гамет. При культивировании in vitro, однако, может произойти спонтанное удвоение хромосом, или его можно вызвать искусственно, например, обработав колхицином клетки или растения. Дигаплоиды фертильны и вполне жизнеспособны.

Гаплоиды и дигаплоиды имеют ряд преимуществ в селекционной работе:

• гаплоидные растения имеют один набор хромосом, характерный для гамет, что дает селекционерам возможность наблюдать мутации сразу же в ходе осмотра гаплоидных растений, поскольку все рецессивные генные мутации в гаплоидных организмах не маскируются доминантными аллелями;

• если гаплоидные клетки подвергнуть полиплоидизации с помощью колхицина, то возникнут дигаплоиды, характеризующиеся абсолютной гомозиготностью. Скрещивание гомозиготных линий дает, как правило, высокопродуктивное потомство. С другой стороны, в настоящее время картофель не размножают семенами из-за пестроты потомства, а создание с помощью гаплоидов гомозиготных линий устранит этот недостаток;

• гомозиготные растения используются селекционерами и в других целях: количественный генетический анализ, изучение взаимодействия генов, изучение генетической изменчивости, определение групп сцепления, установление числа генов, действующих на количественные признаки, определение локализации полигенов и т.д.

• гаплоидные растения лишены летальных или сублетальных мутаций, ведущих к гибели или ослаблению потомства.

Гаплоиды высших растений можно получить из эксплантов, взятых на любой стадии развития гаметофита после редукционного деления клеток спорогенной ткани пыльника.

Наиболее распространены следующие методы индуцирования гаплоидов:

• индуцированный андрогенез в культуре пыльников и пыльцы;

• селективная элиминация хромосом в гибридном зародыше. Этот метод чаще всего используется в селекции злаковых;

• псевдогамия - развитие гаплоидного зародыша после оплодотворения инородной пыльцой без оплодотворения яйцеклетки или же развитие изолированной семяпочки (гиногенез).

В клеточной инженерии чаще применяется первый метод. Впервые гаплоидные растения были получены в 1964 году индийскими исследователями С. Гуха и С. Махешвари при культивировании пыльников дурмана. С тех пор таким методом получены гаплоидные растения более чем у 200 видов, в том числе у пшеницы, ячменя, ржи, риса, картофеля и других культур. Для культуры пыльников используют целые пыльники, стерильно выделенные из бутонов в определенной фазе развития. Их помещают на твердую питательную среду, либо на поверхность жидкой питательной среды. В редких случая культивируют бутоны или соцветия.

Получение гаплоидных растений из изолированных пыльников может идти по двум направлениям: прямая регенерация соматических зародышей и косвенная - через каллусогенез. В первом случае внутри пыльников из отдельных пыльцевых зерен формируются проэмбриональные структуры, которые при определенных условиях культивирования развиваются в эмбриоиды, дающие начало гаплоидным растениям. Эмбриоиды - зародышеподобные структуры. Во втором - пыльца делится, но клетки, возникшие в результате делений, быстро увеличиваются в размерах и, разрывая оболочку пыльцевого зерна, образуют каллус. В результате дальнейшего морфогенеза из этих каллусных клеток регенерируют растения. При этом растения могут иметь разную степень плоидности - ди-, поли-, анеуплоидные. Последние часто стерильны, но после обработки растений колхицином происходит удвоение числа хромосом, в результате чего можно получить фертильные гомозиготы.

Культура пыльцы представляет собой культивирование микроспор, освобожденных от соматических тканей пыльника, в жидкой среде. Пыльцу от соматической ткани пыльника отделяют несколькими способами:

1. Спонтанное высвобождение (пассивный способ) - пыльники определенным образом обрабатываются, инкубируются на жидкой среде, где лопаются, а пыльца высвобождается и всплывает наверх.

2. Гомогенизация и фильтрация. Пыльники, культивируемые в жидкой среде, разрушают, надрезая скальпелем и осторожно надавливая, затем фильтруют (поры фильтра 50 -100 мкм) и центрифугируют. Осадок промывают и суспендируют в жидкой среде.

3. Разрезание - разрезают стенку пыльника. Этот метод применяется редко, так как трудоемок и длителен.

Пыльцевой эмбриогенез обусловлен функциональной и структурной детерминацией пыльцевого ядра и клеток гаметофита, поэтому в развитии могут принимать участие: - лишь вегетативные клетки, - лишь генеративные клетки, - оба типа клеток, если вегетативные и генеративные клетки сольются, при этом образуется диплоидный эмбриоид. Для пасленовых характерен только эмбриогенез, для злаковых - образование как каллусов, так и эмбриоидов. Среди гаплоидов много альбиносов (особенно у злаков). Наибольший выход регенерантов-альбиносов в культуре пыльцы, что вызвано, по-видимому, нарушениями развития пыльцы. Причина не установлена, возможно, это результат мутаций в микроспорах при культивировании.

При отдаленной гибридизации некоторых видов установлено явление селективной элиминации хромосом одного из родителей на ранней стадии развития гибридного зародыша. Это явление хорошо изучено у ячменя. При скрещивании диплоидных ячменей Hordeum vulgare (культурный) и H. bulbosum (многолетний луковичный дикий) на стадии роста зародыша и эндосперма (через 5 дней после оплодотворения) происходит выпад хромосом дикого вида. Возникает гаплоид с набором хромосом H. vulgare. Через 15 суток после оплодотворения рост гибридного зародыша на материнском растении прекращается, но при культивировании in vitro из таких зародышей развиваются проростки. Частота и количество образовавшихся растений при этом способе очень высоки. Кроме того, растения-альбиносы не образуются. С помощью этого метода были выведены сорта Исток и Одесский-115 – за 4 года вместо 10 - 12 лет обычной селекции. В Канаде так были получены сорта Минго и Родео.

Элиминация хромосом встречается и у других родов. Если в качестве опылителя использовать дикий ячмень, то можно индуцировать гаплоиды у ржи и пшеницы.

Работы по получению гаплоидов в культуре женского гаметофита начались в 50-е годы. В последнее время интерес к ним возрос. У растений с мужской стерильностью культивирование неоплодотворенных семяпочек является единственной возможностью получения гаплоидов. Женский гаметофит может быть источником получения гаплоидов и у растений с низким морфогенетическим потенциалом каллусной ткани, либо если каллусная ткань регенерирует растения-альбиносы. У некоторых растений, например у ячменя и риса, индукция зеленых растений намного выше при гиногенезе по сравнению с андрогенезом.

В зависимости от того, какая клетка зародыша даст начало новому организму, различают партеногенез и апогамию. Партеногенез – развитие яйцеклетки без оплодотворения. При апогамии зародыш развивается из синергиды или антиподы. В ранних работах наблюдалась пролиферация соматических тканей зародышевого мешка. Впервые гаплоидный каллус из неоплодотворенной семяпочки был получен в 1964 году Тулеком в культуре гингко, но органогенез индуцировать не удалось. Это случилось лишь в 1976 году, когда Сан Ноум при работе с культурой неоплодотворенных завязей ячменя получил нормальные зеленые гаплоидные растения.

Гиногенез может идти двумя путями – через эмбриогенез и через каллусогенез. В работах Сан Наума с ячменем было показано, что гаплоидные эмбриоиды преимущественно образовывались из антипод, а каллус – из синергид. У риса и эмбиогенез, и каллусогенез давали синергиды, а антиподы в итоге дегенерировали. У табака гаплоидный эмбриогенез характерен для яйцеклеток, у скерды – для антипод.

Одно из направлений клеточных технологий — это использование их в селекции, которое облегчает и ускоряет традиционный селекционный процесс в создании новых форм и сортов растений. Существующие методы культивирования изолированных клеток и тканей in vitroусловно можно разделить на две группы.

Первая группа — это вспомогательные технологии, которые не подменяют обычную селекцию, а служат ей. К ним можно отнести: оплодотворение in vitro (преодоление прогамной несовместимости), культивирование семяпочек и незрелых гибридных зародышей (преодоление постгамной несовместимости), получение гаплоидов путем культивирования пыльников и микроспор, криосохранение изолированных клеток, тканей и органов, клональное микроразмножение отдаленных гибридов.

Вторая группа методов ведет к самостоятельному, независимому от традиционных методов селекции, получению новых форм и сортов растений: клеточная селекция с использованием каллусной ткани, соматическая гибридизация (слияние изолированных протопластов и получение неполовых гибридов), применение методов генной инженерии.

В отдаленной гибридизации находят применение такие методы культуры изолированных тканей, как оплодотворение in vitro, эмбриокультура (выращивание изолированных зародышей на искусственных питательных средах), клональное микроразмножение ценных гибридов, а также получение гаплоидов in vitro и криосохранение.

Оплодотворение in vitro (преодоление прогамной несовместимости) проводится в том случае, когда невозможно осуществить оплодотворение между выбранными парами в естественных условиях. Это вызвано несколькими причинами: 1) физиологические (несоответствие во времени созревания пыльцы и т. д.); 2) морфологические (короткая пыльцевая трубка или блокирование роста ее на раз¬ных этапах развития и т. д.).

Оплодотворение in vitro можно осуществить двумя способами: а) культивирование на искусственной агаризованной питательной среде завязи с нанесенной на нее готовой пыльцой; б) завязь вскрывается и на питатель¬ную среду переносятся кусочки плаценты с семяпочками, вблизи которых или непосредственно на ткани плаценты культивируется готовая пыльца. Визуально определить, прошло оплодотворение in vitro или нет, можно по быстро увеличивающимся в размерах семяпочкам. Сформировавшийся зародыш, как правило, не переходит в состояние покоя, а сразу прорастает и дает начало гибридному поколению. Плацентарное оплодотворение in vitro позволило преодолеть несовместимость в скре¬щивании сортов культурного табака N. tabacum с дикими видами N. rosulata и N. debneyi и сделало возможным получение межвидовых гибридов табака в опытах М.Ф. Терновского и др. (1976), Шинкаревой (1986).

Постгамная несовместимость при отдаленной гибридизации возникает после оплодотворения. Часто при этом образуются щуплые невсхожие семена. Причиной может быть расхождение во времени развития зародыша и эндосперма. Из-за слабого развития эндосперма зародыш бывает неспособен к нормальному прорастанию. В таких случаях из зрелой щуплой зерновки изолируют зародыш и выращивают его в питательной среде.

Выращивание зародышей в искусственной питательной среде называетсяэмбриокультурой. Среда для выращивания зрелого зародыша может быть простой, без добавок физиологически активных веществ (например, среда Уайта) или любая другая, содержащая минеральные соли и сахарозу. При более отдаленных скрещиваниях нарушения в развитии зародыша могут наблюдаться уже на ранних этапах, что выражается в отсутствии дифференцировки, замедленном росте. В этом случае культура зародыша состоит из двух этапов — эмбрионального роста зародыша, во время которого продолжается его дифференцировка, и прорастания подросшего зародыша. Для первого этапа требуется более сложная по составу среда с повышенным содержанием сахарозы, с добавками различных аминокислот, витаминов и гормонов.

Применение эмбриокультуры в селекции приобретает в последнее время большое значение для получения отдаленных гибридов зерновых, злаковых и других сельскохозяйственных культур. Показана возможность увеличения выхода пшенично-ржаных гибридов путем доращивания незрелых зародышей, а также использования эмбриокультуры для преодоления постгамной несовместимости при гибридизации пшеницы с колосняком.

Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitroабортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.

Исследована гормональная регуляция роста и развития зародышей томата in vitro . Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.

Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции.