Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практическое тестирование видеокарт ATI и NVIDI...docx
Скачиваний:
2
Добавлен:
27.09.2019
Размер:
29.34 Кб
Скачать

Практическое тестирование видеокарт ATI и NVIDIA в задачах декодирования видеоданных Воспроизведение видеоданных высокого разрешения ("High Definition", сокращенно - HD) в современных форматах сжатия, весьма требовательных к мощности системы, является ресурсоемкой задачей даже для мощных ПК. Основная нагрузка приходится на центральный процессор, но современные видеокарты берут на себя выполнение части вычислений по декодированию и постобработке. В современных видеочипах ATI и NVIDIA есть программируемые блоки для задач ускорения декодирования и постобработки разных видеоформатов. Технология, задействующая возможности видеочипов при воспроизведении видео, называется DirectX Video Acceleration (DXVA). Она позволяет использовать помощь видеопроцессора в декодировании и постобработке (деинтерлейсинг, шумоподавление и т.п.), а возможности чипов последних выпусков от ATI и NVIDIA по декодированию видео включают поддержку основных форматов: MPEG2, WMV9 и H.264. Для этого требуются специальные декодеры (ATI DVD Decoder, PureVideo Decoder, CyberLink MPEG2 и H.264 video decoder), и проигрыватели, поддерживающие DXVA, такие, как Windows Media Player 10. Сначала появились DXVA декодеры для аппаратного ускорения MPEG2, затем выпустили дополнение для WMP10 с поддержкой DXVA для декодирования WMV9 формата, а в последние два года появились H.264 декодеры с DXVA-ускорением, одним из первых был CyberLink. А совсем недавно, весной этого года, вышел качественный программный декодер формата H.264, под названием CoreAVC, который мы также рассмотрим в статье. С проигрыванием MPEG2 видео в невысоких разрешениях (до используемого в DVD дисках 480p/480i) на данный момент особых проблем с производительностью не возникает, но в начале распространения DVD видео, когда типичные процессоры не очень хорошо справлялись с декодированием MPEG2, была ситуация, когда только с помощью аппаратной поддержки от видеокарт компьютеры того времени могли справиться с этой задачей. И сейчас, без соответствующей поддержки, даже некоторые новые CPU не всегда могут полностью удовлетворить требования по декодированию такого современного формата, как H.264 в самых высоких разрешениях, например, в 1080p (прогрессивный 1920x1080). По заявлениям ATI и NVIDIA, их последние видеочипы помогают процессорам в декодировании наиболее требовательного к ресурсам формата H.264, в дополнение к уже известным WMV и MPEG2, в том числе в высоких разрешениях. Для разных чипов существуют некоторые ограничения, так, не все low-end чипы обладают необходимыми возможностями и производительностью для поддержки самых высоких разрешений, уровень аппаратной поддержки зависит от модели карты и установленного чипа. Но возможности, предоставляемые последними видеокартами по аппаратному ускорению декодирования H.264, позволяют говорить о теоретическом решении проблем с воспроизведением таких файлов. Так ли это или на практике проблемы еще остались? В статье мы рассмотрим сравнительные производительность и качество воспроизведения видео разных форматов, начиная с MPEG2 и заканчивая все тем же относительно свежим H.264/AVC, информацию о котором можно найти в уже упомянутом теоретическом материале. Особое внимание мы обратим на полностью программный декодер CoreAVC, который показал себя с хорошей стороны с момента его выпуска. CoreAVC оказался значительно более эффективным, по сравнению с другими известными H.264 декодерами от CyberLink и Nero, не говоря уже о декодере QuickTime, при том же качестве картинки. Кстати, на данный момент аппаратно ускоренная версия CoreAVC пока еще отсутствует в публичном доступе, но, судя по заявлениям его разработчиков, планы по поддержке видеочипов у них есть.

Практическое тестирование видеокарт ATI и NVIDIA в задачах декодирования видеоданных Воспроизведение видеоданных высокого разрешения ("High Definition", сокращенно - HD) в современных форматах сжатия, весьма требовательных к мощности системы, является ресурсоемкой задачей даже для мощных ПК. Основная нагрузка приходится на центральный процессор, но современные видеокарты берут на себя выполнение части вычислений по декодированию и постобработке. В современных видеочипах ATI и NVIDIA есть программируемые блоки для задач ускорения декодирования и постобработки разных видеоформатов. Технология, задействующая возможности видеочипов при воспроизведении видео, называется DirectX Video Acceleration (DXVA). Она позволяет использовать помощь видеопроцессора в декодировании и постобработке (деинтерлейсинг, шумоподавление и т.п.), а возможности чипов последних выпусков от ATI и NVIDIA по декодированию видео включают поддержку основных форматов: MPEG2, WMV9 и H.264. Для этого требуются специальные декодеры (ATI DVD Decoder, PureVideo Decoder, CyberLink MPEG2 и H.264 video decoder), и проигрыватели, поддерживающие DXVA, такие, как Windows Media Player 10. Сначала появились DXVA декодеры для аппаратного ускорения MPEG2, затем выпустили дополнение для WMP10 с поддержкой DXVA для декодирования WMV9 формата, а в последние два года появились H.264 декодеры с DXVA-ускорением, одним из первых был CyberLink. А совсем недавно, весной этого года, вышел качественный программный декодер формата H.264, под названием CoreAVC, который мы также рассмотрим в статье. С проигрыванием MPEG2 видео в невысоких разрешениях (до используемого в DVD дисках 480p/480i) на данный момент особых проблем с производительностью не возникает, но в начале распространения DVD видео, когда типичные процессоры не очень хорошо справлялись с декодированием MPEG2, была ситуация, когда только с помощью аппаратной поддержки от видеокарт компьютеры того времени могли справиться с этой задачей. И сейчас, без соответствующей поддержки, даже некоторые новые CPU не всегда могут полностью удовлетворить требования по декодированию такого современного формата, как H.264 в самых высоких разрешениях, например, в 1080p (прогрессивный 1920x1080). По заявлениям ATI и NVIDIA, их последние видеочипы помогают процессорам в декодировании наиболее требовательного к ресурсам формата H.264, в дополнение к уже известным WMV и MPEG2, в том числе в высоких разрешениях. Для разных чипов существуют некоторые ограничения, так, не все low-end чипы обладают необходимыми возможностями и производительностью для поддержки самых высоких разрешений, уровень аппаратной поддержки зависит от модели карты и установленного чипа. Но возможности, предоставляемые последними видеокартами по аппаратному ускорению декодирования H.264, позволяют говорить о теоретическом решении проблем с воспроизведением таких файлов. Так ли это или на практике проблемы еще остались? В статье мы рассмотрим сравнительные производительность и качество воспроизведения видео разных форматов, начиная с MPEG2 и заканчивая все тем же относительно свежим H.264/AVC, информацию о котором можно найти в уже упомянутом теоретическом материале. Особое внимание мы обратим на полностью программный декодер CoreAVC, который показал себя с хорошей стороны с момента его выпуска. CoreAVC оказался значительно более эффективным, по сравнению с другими известными H.264 декодерами от CyberLink и Nero, не говоря уже о декодере QuickTime, при том же качестве картинки. Кстати, на данный момент аппаратно ускоренная версия CoreAVC пока еще отсутствует в публичном доступе, но, судя по заявлениям его разработчиков, планы по поддержке видеочипов у них есть.

Устройства жк мониторов

Жидкокристаллические мониторы Составные слои монитора Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic - кристаллические экраны с двойным сканированием) и TFT (thin film transistor - на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра. В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера. Разрешение монитора От размера монитора зависят и занимаемое им рабочее пространство, и, что немаловажно, его цена. Несмотря на устоявшуюся классификацию ЖК-мониторов в зависимости от размера экрана по диагонали (15-, 17-, 19-дюймовые), более корректной является классификация по рабочему разрешению. Дело в том, что, в отличие от мониторов на основе ЭЛТ, разрешение которых можно менять достаточно гибко, ЖК-дисплеи имеют фиксированный набор физических пикселей. Именно поэтому они рассчитаны на работу только с одним разрешением, называемым рабочим. Косвенно это разрешение определяет и размер диагонали матрицы, однако мониторы с одинаковым рабочим разрешением могут иметь разную по размерам матрицу. Например, мониторы с диагональю от 15 до 16 дюймов в основном имеют рабочее разрешение 1024Ѕ768, а это означает, что у данного монитора действительно физически содержится 1024 пикселя по горизонтали и 768 пикселей по вертикали. Рабочее разрешение монитора определяет размер иконок и шрифтов, которые будут отображаться на экране. К примеру, 15-дюймовый монитор может иметь рабочее разрешение и 1024Ѕ768, и 1400Ѕ1050 пикселей. В последнем случае физические размеры самих пикселей будут меньшими, а поскольку при формировании стандартной иконки в обоих случаях используется одно и то же количество пикселей, то при разрешении 1400Ѕ1050 пикселей иконка по своим физическим размерам окажется меньше. Для некоторых пользователей слишком маленькие размеры иконок при высоком разрешении монитора могут оказаться неприемлемыми, поэтому при покупке монитора нужно сразу обращать внимание на рабочее разрешение. Конечно же, монитор способен выводить изображение и в другом, отличном от рабочего разрешении. Такой режим работы монитора называют интерполяцией. В случае интерполяции качество изображения оставляет желать лучшего. Режим интерполяции заметно сказывается на качестве отображения экранных шрифтов.

Введение

Настоящая инструкция предназначена для предотвращения неблагоприятного воздействия на человека вредных факторов, сопровождающих работы со средствами вычислительной техники и периферийным оборудованием.

Настоящая инструкция подлежит обязательному и безусловному выполнению. За нарушение инструкции виновные несут ответственность в административном и судебном порядке в зависимости от характера последствий нарушения.

Соблюдение правил безопасной работы является необходимым условием предупреждения производственного травматизма.