Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
часть в без 6-10, 12, 24-29.docx
Скачиваний:
4
Добавлен:
27.09.2019
Размер:
97.9 Кб
Скачать
  1. Дайте определения системы линейно зависимых и системы линейно независимых функций. Установить линейную независимость системы функций , , .

Функции y1(x), y2(x), ..., yn(x), определённые на отрезке [a;b], называются линейно зависимыми на [a;b] , если существуют постоянные α1, α2, ..., αn , не равные нулю одновременно и такие, что α1y1(x) + α2y2(x) + ... + αnyn(x) = 0 для всех x из отрезка [a;b].

В противном случае функции y1(x), y2(x), ..., yn(x) называются линейно независимыми.

Линейную зависимость и линейную независимость функций определяют также на (a;b) , (a;b] , [a;b) , на бесконечных промежутках.

Справедливо следующее утверждение.

Функции y1(x), y2(x), ..., yn(x) линейно зависимы на отрезке [a;b] тогда и только тогда, когда хотя бы одна из них является линейной комбинацией других на этом отрезке.

  1. Установить линейную зависимость системы функций , , . Пусть функции линейно независимы , тогда составим определитель Вронского:

Данные функции линейно зависимы так первую функцию можно представить в виде линейной комбинации двух других 2= 1*(x+1)+(-1)+(x-1), соответственно можно подобрать такие α1,α2,α3 при которых верно равенство: α1*y1+α2*y2+α3*y3=0

1*(x+1)+(-1)*(x-1)+(-1)*2=0

  1. Докажите, что сумма частного решения линейного неоднородного дифференциального уравнения второго порядка и общего решения соответствующего однородного уравнения является общим решением линейного неоднородного уравнения второго порядка. Общее решение неоднородного уравнения L(y)=f(x)есть сумма частного решения ‾у(х) этого уравнения и общего решения соответствующего ему однородного уравнения L(y)=0. Доказательство: Покажем сначала, что сумма у(х) частного решения уравнения неоднородного уравнения ‾у(х)и произвольного решения у0(х) однородного уравнения также является решением неоднородного уравнения. Действительно, в силу леммы имеем L(‾y+y0)=L(‾y)+L(y0)=f(x)+0=f(x), что и требовалось доказать. Теперь нам осталось доказать, что всякое решение у(х) неоднородного уравнения есть сумма ‾у(х) и некоторого частного решения у0(х) уравнения L(y)=f(x). Имеем L(у-‾y)=L(y)-L(‾y)=f(x)-f(x)=0.Следовательно, у0(х)=у(х)-‾у(х) – решение уравнения L(y)=0, значит, у(х)=у0(х)+‾у(х), что и завершает доказательство.

Возьмем ур-е (1): . Решением ур-я(1) будет сумма частного и общего решения однородного ур-я .

Док-во. Тогда имеем *: . Возьмем любое решение ур-я (1)**:

Вычтем их ** уравнение *, получим: ЧТД

  1. Докажите, что линейная комбинация решений линейного однородного дифференциального уравнения второго порядка также является решением этого уравнения. Пусть у1(х) и у2(х),….,ук(х) – произвольные решения линейного однородного дифференциального уравнения и С1, С2,….,Ск – произвольные постоянные, тогда линейная комбинация С1у1(х)+С2у2(х)+….+Скук(х) также является решением этого уравнения. Действительно, на основании L(C1y1+C2y2)= C1L(y1)+C2L(y2), имеем: L(C1y1+C2y2+….+Ckyk)=C1L(y1)+C2L(y2)+…+CkL(yk)=0 что и требовалось доказать.

  2. Докажите, что общим решением линейного однородного дифференциального уравнения второго порядка является линейная комбинация фундаментальной системы решений этого уравнения.

Пусть у1(х),……, уп(х) – фундаментальный набор решений уравнения L(y)=0, тогда общее решение этого уравнения задается формулой: y=C1y1+…+Cnyn. Доказательство. То, что функция у(х), определяемая формулой

С 1у10)+С2у20)+….+Скук0)=0

С1у’10)+С2у’20)+…+ Сkу’k0)=0

………………………………………………

С1у1(k-1)0)+С2у2(k-1)0)+…..+ Сkуk(k-1)0)=-0

Является решением уравнения L(y)=0, следует из С1у1(х)+С2у2(х)+….+Скук(х). Покажем теперь что любое решение ѱ (х) уравнения L(y)=0 представимо в виде линейной комбинации функций у1,…,уп. Зафиксируем некоторую точку х0. Введем следующие обозначения ѱ(х0)=у0, ѱ’(x0)=y’0, …., ѱ(n-1)(x0)=y0(n-1) рассмотрим систему линейных алгебраических уравнений:

С 1у10)+С2у20)+….+Сnуn0)=y0

С1у’10)+С2у’20)+…+ Сnу’n0)=y0

………………………………………………

С1у1(n-1)0)+С2у2(n-1)0)+…..+ Сnуn(n-1)0)=y0(n-1)

Определителем этой системы является определитель Вронского для функции у1,…уп в точке х0. Ввиду линейной зависимости этих функций данный определитель не равен нулю. Следовательно, у системы

С 1у10)+С2у20)+….+Сnуn0)=y0(1.1)

С1у’10)+С2у’20)+…+ Сnу’n0)=y0

………………………………………………

С1у1(n-1)0)+С2у2(n-1)0)+…..+ Сnуn(n-1)0)=y0(n-1)

Существует решение (‾С1, ‾С2,….,‾Сп). Тогда функция у(х)=‾С1у1(х)+‾С2у2(х)+…+‾Спуп(х), как это вытекает из (1.1), удовлетворяет тем же начальным условиям. В силу единственности решения задачи Коши имеем ѱ(х)=у(х), т.е. ѱ(х) есть линейная комбинация функции у1,…уп. теорема доказана.