Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика Шпоры v2.1 full.docx
Скачиваний:
4
Добавлен:
26.09.2019
Размер:
414.98 Кб
Скачать

Вопрос 43. Энергия магнитного поля тока.

Рассмотрим контур индуктивностью L, по которому течет ток I. С кон­туром сцеплен магнитный поток Ф=LI. При изменении тока на dl магнитный поток изменяется на dФ=LdI. Для изменения магнитного потока на величину dФ необходимо совершить работу dA=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф будет равна .

Следовательно, энергия магнитного поля, связанного с контуром,

однородное магнитное поле внутри длинного соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия заключена в объеме соленоида и распределена в нем с объемной постоянной плотностью

Вопрос 45. Ферромагнетизм.

Ферромагнетики — сильномагнитные вещества, обладающие спонтанной намагниченностью даже при отсутствии внешнего магнитного поля. Ферромагнитными свойствами обладают — железо, кобальт, никель, гадолиний, их сплавы и соединения. Важнейшее практическое значение имеет зависимость магнитных свойств предыстории намагничения. Это явление получило название магнитного гистерезиса. Различные ферромагнетики дают разные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысячных до 1—2 А/см) коэрцитивной силой НC (с узкой петлей гистерезиса) называются мягкими, с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широкой петлей гистерезиса) — жесткими. Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. Переход вещества из ферромагнитного состояния в парамагнитное, происходящий в точке Кюри, не со­провождается поглощением или выделением теплоты, т. е. в точке Кюри происходит фазовый переход II рода. Наконец, процесс намагничения ферромагнетиков сопровождается изменением его линейных размеров и объема. Это явление получило название магнитострикции. Величина и знак эффекта зависят от напряженности Н намагничивающего поля, от природы ферромагнетика и ориентации кристаллографических осей по отношению к полю. Природа ферромагнетизма Качественная теория ферромагнетизма была разработана французским физиком П. Вейссом. Последовательная количественная теория на основе квантовой механики развита Я. И. Френкелем и немецким физиком В. Гейзенбергом. Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Вейсс предположил, что ферромагнетик ниже точки Кюри разбивается на большое число малых макроскопических областей — доменов, самопроизвольно намагниченных до насыщения. При отсутствии внешнего магнитного поля магнитные моменты отдельных доменов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых областей спонтанной намагниченности. При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепловое движение не в состоянии быстро дезориентировать магнитные моменты столь крупных образований, какими являются домены. Существование доменов в ферромагнетиках доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур.

Вопрос 44. Закон полного тока.

Циркуляцией вектора В по заданному замкнутому контуру называется интеграл

где dl — вектор элементарной длины контура, направленной вдоль обхода контура, Bl=Bcos — составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода),  — угол между векторами В и dl.

Закон полного тока для магнитного поля в вакууме: циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной 0 на алгебраическую сумму токов, охватываемых этим контуром:

где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром.

Внутри соленоида поле является однородным, а снаружи — неоднородным и очень слабым.

Для магнитной индукции поля внутри соленоида (в вакууме):

B=0NI/l

 B=0NI/(2r), где N — число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и В2r=0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Вопрос 46. Интерференция света от двух источников .

Явление интерференции света состоит во взаимном усилении волн при натяжении в одних точках пространства и ослаблении в других.

Так как волны когерентны, то cos(φ21) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (I~А2)

I =I1 +I2 +2 √ I1I2 cos (φ2 –φ1)

В точках пространства, где cos(φ2 –φ1)>0, интенсивность I > I1 + I2, где cos(φ2 –φ1)<0, интенсивность I<I1+I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности. Это явление называется интерференцией света.

Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L Δ=L 2-L1— называется оптической разностью хода.

условие интерференционного максимума - Δ=±mλ0 (m=0, 1, 2, ...)

условие интерференционного минимума - Δ=±(2m+l)λ0/2  (m=0, 1, 2, ...)

Вопрос 48. Дифракция света.

Дифракцией называется отклонение распространения волн вблизи препятствий от прямолинейного. Поэтому волны могут попадать в область геометрической тени, т.е. огибать препятствия.

Согласно принципу Гюйгенса — Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S.

Френель рассмотрел взаимную интерференцию вторичных волн с помощью метода зон.

Дифракция на круглом отверстии. Пусть сферическая волна, распространяющаяся из точечного источника S, ограничивается диафрагмой с круглым отверстием. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на оси диафрагмы (рис. 4.29). Экран параллелен плоскости отверстия и находится от него на расстоянии b. Вид дифракционной картины определяется числом зон Френеля волновой поверхности, открываемых отверстием. Если отверстие открывает одну зону Френеля, то в точке В амплитуда А = А1, т.е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре раза.

Если отверстие открывает две зоны Френеля, то их действия в точке В практически уничтожают друг друга из-за интерференции.

Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами , А = А1/2  Аm/2, где знак плюс соответствует нечетным m и минус — четным m.

Когда отверстие открывает нечетное число зон Френеля, то амплиту в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсив) будет равна нулю.

Вопрос 47. Интерференция света в тонких пленках. Интерференция света — нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности.

В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленки на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки.

Пусть на прозрачную плоскопараллельную пленку с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке О луч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0 = 1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча В дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы. В результате возникает интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами. С учетом потери полуволны для оптической разности хода получим Δ = 2d

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Для устранения потерь светового потока вследствие отражения на границе стекло-воздух осуществляют просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы.