Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сдн 11.docx
Скачиваний:
27
Добавлен:
24.09.2019
Размер:
477.46 Кб
Скачать

Терригенные коллекторы - коллекторы, представленные терригенными породами - песками, песчаниками, алевролитами различного Ринерального состава, с разной степенью глинистости, разным составом и характером цементирующих веществ, обычно нормального или трещинно-нормального типа.

Карбонатные коллекторы - коллекторы, представленные карбонатными породами; к ним относят разновидности известняков, доломитов и промежуточных образований с большим разнообразием пустот и их сочетаний, обладающих способностью к значительному улучшению фильтрационных и емкостным свойств.

19. Методы воздействия на призабойную зону пласта

Дополнительный приток нефти в скважины, а следовательно, и дополнительный дебит обеспечивают применение методов увеличения проницаемости призабойной зоны пласта. На окончательной стадии бурения скважины глинистый раствор может проникать в поры и капилляры призабойной зоны пласта, снижая ее проницаемость. Снижение проницаемости этой зоны, загрязнение ее возможно и в процессе эксплуатации скважины. Проницаемость призабойной зоны продуктивного пласта увеличивают за счет применения различных методов:

· химических (кислотные обработки),

· механических (гидравлический разрыв пласта и с помощью импульсно-ударного воздействия и взрывов),

· тепловых (паротепловая обработка, электропрогрев) и их комбинированием.

Кислотная обработка скважин связана с подачей на забой скважины под определенным давлением растворов кислот. Растворы кислот под давлением проникают в имеющиеся в пласте мелкие поры и трещины и расширяют их. Одновременно с этим образуются новые каналы, по которым нефть может проникать к забою скважины. Для кислотной обработки применяют в основном водные растворы соляной и плавиковой (фтористоводородной) кислоты. Концентрация кислоты в растворе обычно принимается равной 10¸15 %, что связано с опасностью коррозионного разрушения труб и оборудования. Однако в связи с широким использованием высокоэффективных ингибиторов коррозии и снижением опасности коррозии концентрацию кислоты в растворе увеличивают до 25¸28 %, что позволяет повысить эффективность кислотной обработки. Длительность кислотной обработки скважин зависит от многих факторов — температуры на забое скважины, генезиса пород продуктивного пласта, их химического состава, концентрации раствора, давления закачки. Технологический процесс кислотной обработки скважин включает операции заполнения скважины кислотным раствором, продавливание кислотного раствора в пласт при герметизации устья скважин закрытием задвижки. После окончания процесса продавливания скважину оставляют на некоторое время под давлением для реагирования кислоты с породами продуктивного пласта. Длительность кислотной обработки после продавливания составляет 12¸16 ч на месторождениях с температурой на забое не более 40°С и 2¸3 ч при забойных температурах 100¸150°С.

Гидравлический разрыв пласта (ГРП) заключается в образовании и расширении в пласте трещин при создании высоких давлений на забое жидкостью, закачиваемой в скважину. В образовавшиеся трещины нагнетают песок, чтобы после снятия давления трещина не сомкнулась. Трещины, образовавшиеся в пласте, являются проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин может достигать нескольких десятков метров, ширина их 1÷4 мм. После гидроразрыва пласта производительность скважины часто увеличивается в несколько раз.

Операция ГРП состоит из следующих этапов: закачки жидкости разрыва для образования трещин; закачки жидкости — песконосителя; закачки жидкости для продавливания песка в трещины.

Гидропескоструйная перфорация скважин - применяется для создания каналов, соединяющих ствол скважины с пластом при кислотной обработке скважины и других методах воздействия. Метод основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта. Жидкость с песком направляется к насадкам перфоратора по колонне насосно-компрессорных труб с помощью насосов, установленных у скважины.

Виброобработка забоев скважин заключается в том, что на забое скважины с помощью вибратора формируются волновые возмущения среды в виде частых гидравлических импульсов или резких колебаний давления различной частоты и амплитуды. При этом повышается проводимость пластовых систем вследствие образования новых и расширения старых трещин и очистки призабойной зоны.

Торпедирование скважин состоит в том, что заряженную взрывчатым веществом (ВВ) торпеду спускают в скважину и взрывают против продуктивного пласта. При взрыве образуется каверна, в результате чего увеличиваются диаметр скважины и сеть трещин.

Тепловое воздействие на призабойную зону используют в том случае, если добываемая нефть содержит смолу или парафин. Существует несколько видов теплового воздействия: электротепловая обработка; закачка в скважину горячих жидкостей; паротепловая обработка.

Термокислотную обработку скважин применяют на месторождениях нефтей с большим содержанием парафина. В этом случае перед кислотной обработкой скважину промывают горячей нефтью или призабойную зону пласта прогревают каким-либо нагревателем для расплавления осадков парафинистых отложений. Сразу после этого проводят кислотную обработку.

Статическое давление - это давление на забое скважины, устанавливающееся после достаточно длительной ее остановки. Оно равно гидростатическому давлению столба жидкости в скважине высотой (по вертикали), равной расстоянию от уровня жидкости до глубины, на которой производится измерение. Обычно за такую глубину принимается середина интервала вскрытой толщины пласта. С другой стороны, это давление равно давлению внутри пласта, вскрытого скважинами, и поэтому оно называется пластовым давлением. Динамический уровень- жидкости.Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто. При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины.

Источники пластовой энергии. Динамическое давление. Статический уровень. Динамическое давление- на забое скважины.Это давление устанавливается на забое во время отбора жидкости или газа из скважины или во время закачки жидкости или газа в скважину. Динамическое давление на забое очень часто называют забойным давлением в отличие от статического, которое называют пластовым давлением. Однако и статическое, и динамическое давления в то же время являются забойными. Уровень столба жидкости, установившийся в скважине после ее остановки при условии, что на него действует атмосферное давление, называется статическим уровнем.Если устье скважины герметизировано, то обычно в верхней части скважины скапливается газ, создающий некоторое давление на уровень жидкости. В этом случае уровень жидкости не называется статическим, хотя соответствует статическим условиям скважины, и давление на забое скважины равно сумме гидростатического давления столба жидкости и давления газа.

Конструкция оборудования забоев скважин. Виды несовершенных скважин.

Методы воздействия на призабойную зону скважины. Обработка скважин соляной кислотой. Воздействие через фильтр обсадной колонны скважины или прямо в забое необсаженной скважины на карбонатные соединения в породе с целью их разрушения, чтобы увеличить проницаемость призабойной зоны пласта и тем повысить продуктивность скважины. Большей частью применяют соляную кислоту в концентрации 10-15%. Для повышения эффекта воздействия и ускорения процесса растворения более стойких коллекторов (загипсованные известняки, доломиты) применяют термокислотный метод обработки, основанный на подогреве кислоты при реакции ее с металлическим магнием или алюминием. Наоборот, для замедления действия кислоты на чистые известняки добавляют органические ингибиторы: фурфурол, фурфуроловый спирт и т. д. Для предохранения от коррозии металлических частей арматуры скважины и труб в соляную кислоту добавляют ингибиторы (формалин, уникол и т. д.). В ряде случаев к солянокислотной обработке скважин прибегают для ликвидации аварий: прихвата инструмента, отвода в сторону оборвавшихся деталей и т. д. Так как при этих работах не применяют повышенные давления, то метод получил название солянокислотных ванн.

Методы воздействия на призабойную зону скважины. Термокислотные обработки призабойной зоны скважины. Этот вид воздействия на ПЗС заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его сплавами (МЛ-1, МА-1 п др.) в специальном реакционном наконечнике, расположенном на конце НКТ, через который прокачивается рабочий раствор НСL. При этом происходит следующая реакция. Хлористый магний (MgCL2) остается в растворе.

Обработка призабойной зоны скважины, сложенные карбонатами, песчаниками, алевролитами и др. Особенность СКО терригенных (песчаники, алевролиты и др.) коллекторов заключается в том, что кислота в них не формирует отдельные каналы, проникающие в пласт на различную глубину, как в карбонатных и тем более трещиноватых коллекторах. В данном случае кислотный раствор проникает в пласт более равномерно и контур ее проникновения близок к круговому. Однако радиус такого контура проникновения по толщине пласта будет различный в зависимости от проницаемости и пористости прослоев, которых в данном интервале может быть несколько. Если известны проницаемости, пористости, толщины и карбонатность отдельных прослоев в слоистонеоднородном пласте, то приближенно можно рассчитать глубину проникновения кислоты в пласт по прослоям при закачке данного объема раствора или наоборот, задаваясь глубинами проникновения кислоты по прослоям, можно определить необходимый объем растворов НС1. Другой особенностью СКО является то, что в карбонатных коллекторах кислота реагирует фактически с неограниченной массой карбонатного вещества по всей глубине образующегося канала, тогда как в терригенных карбонаты составляют всего лишь несколько процентов от общего объема породы. Поэтому фронт нагнетаемого раствора растворяет эти карбонаты и нейтрализуется, а последующие порции раствора, двигаясь по порам, в которых карбонаты уже удалены, сохраняет свою первоначальную активность. Это приводит к тому, что при последующем дренировании из скважины сначала поступает концентрированный раствор НСL, а за ним нейтрализованная кислота. Соляная кислота практически взаимодействует только с карбонатными компонентами, не вступая в реакцию с основной массой породы террпгепного коллектора, состоящего из силикатных веществ (кварц) и каолинов. Эти вещества взаимодействуют с фтористоводородной кислотой (HF), называемой также плавиковой. обработка терригенных коллекторов смесью соляной и фтористоводородной кислот целесообразна как для удаления карбонатных цементирующих веществ, так и для растворения глинистого материала. По этим причинам смесь НСL и HF называют глинокислотой.

Гидравлический разрыв пласта (ГРП) – искусственный метод образования новых или раскрытия уже существующих трещин в породах призабойной зоны путем закачки жидкости в пласт под высоким давлением. Для предотвращения смыкания берегов трещин после окончания операции и снижения давления до первоначального в пласт вместе с жидкостью закачивают зернистый материал – кварцевый песок. Трещины разрыва проникают в глубь пласта, соединяя ствол скважины с удаленными от забоя продуктивными частями пласта.

Гидроразрыв пластов состоит из следующих последовательно проводимых операций:

  1. закачки в пласт жидкости разрыва для образования трещин в пласте;

  2. закачки жидкости-песконосителя с песком, предназначенным для заполнения трещин;

  3. закачки продавочной жидкости для продавливания песка в трещины.

Механизм образования трещин при разрыве можно представить следующим образом. В осадочных горных породах имеются естественные микротрещины, которые сжаты под действием горного давления. Проницаемость таких трещин очень мала. Под давлением, создаваемым насосами, жидкость, закачиваемая в скважину, фильтруется в первую очередь по зонам наибольшей проницаемости, в том числе в естественные трещины. При этом между пропластками по вертикали создается разность давлений, так как в более проницаемых пропластках и трещинах давление будет больше чем в малопроницаемых или практически непроницаемых. В результате возникает усилие, действующее на кровлю и подошву проницаемого пласта; вышележащие породы подвергаются деформации, и на границах пропластков образуются новые трещины или же расширяются старые.

Одним из важнейших параметров проведения гидроразрыва пласта является давление, при котором образуются трещины в материале породы. В идеальных условиях давление раскрытия трещин рр должно быть не меньше горного давления рг создаваемого толщей вышележащих пород. Однако в реальных условиях чаще всего величина разрыва бывает даже меньше, чем горное давление. Это объяснятся тем, что после бурения скважин меняется напряженно-деформированное состояние горных пород, залегающих в кровле или в самом нефтяном пласте. Возникают пластические деформации глин и глинистых пород. Это приводит к возникновению разрушающих сводов в зоне пластов, охваченных пластической деформацией, и вследствие этого горное давление оказывается уменьшенным вблизи скважины, поэтому давление гидроразрыва снижается.

В качестве рабочих жидкостей гидроразрыва применяют различные жидкости, которые по физико-химическим свойствам можно разделить на две группы: жидкости на углеводородной основе и жидкости на водяной основе. По своему назначению жидкости разделяются на три категории: жидкость разрыва, жидкость-песконоситель и продавочная жидкость.

Углеводородные жидкости применяют в нефтяных скважинах; к ним относятся нефть повышенной вязкости, мазут, дизельное топливо или керосин, загущенные нефтяными мылами. Водяные же растворы применяют в нагнетательных скважинах, к ним относятся: водный раствор сульфит-спиртовой барды, пресная или солевая вода, соляная и плавиковая кислоты, загущенные реагентами-загустителями. Широко применяются в качестве жидкостей гидроразрыва различные эмульсии: нефтекислотные (гидрофобные), водонефтяные (гидрофильные) и кислотно-керосиновые.

Эмульсии приготавливаются путем механического перемешивания компонентов центробежными или шестеренчатыми насосами с введением необходимых химических реагентов. Для приготовления эмульсий в качестве одной из фаз используют керосин, дизельное топливо, различные нефти, в качестве второй фазы – воду или соляную кислоту.

Все жидкости, применяемые при гидроразрыве, должны удовлетворять следующим требованиям.

1. Рабочие жидкости не должны уменьшать ни абсолютную, ни фазовую проницаемость породы пласта. При фильтрации жидкостей с углеводородной основой через водонасыщенные породы фазовая проницаемость последних для воды существенно снижается. Также снижается фазовая проницаемость нефтенасыщенных пород для углеводородных жидкостей после фильтрации через них жидкостей с водной основой, поэтому при гидроразрыве в нефтяных скважинах применяют жидкости с углеводородной основой, а в нагнетательных – с водной. Рабочие жидкости для гидроразрыва не должны содержать механических примесей и при соприкосновении с пластовыми жидкостями и породами не должны образовывать нерастворимых осадков.

2. Рабочие жидкости должны обладать свойствами, обеспечивающими сохранение проницаемости пород пласта за счет наиболее полного извлечения их из созданных трещин и порового пространства пород. При этом лучшими будут жидкости, полностью растворяющиеся в пластовых жидкостях.

3. При применении вязких жидкостей вязкость их должна быть стабильной в условиях обрабатываемого пласта и в пределах времени проведения процесса гидравлического разрыва.

4. При проведении процесса в зимних условиях рабочие жидкости должны иметь низкую температуру замерзания.

5. Рабочие жидкости должны быть недорогими и недефицитными.

6. Жидкость разрыва должна иметь определенную вязкость. При малой вязкости для достижения давления разрыва потребуется закачка значительного объема жидкости в пласт и, соответственно, значительное число одновременно работающих насосных агрегатов. При большой вязкости жидкости разрыва для образования трещин необходимы очень высокие давления.

При разрыве ненарушенных пластов, лишенных естественной трещиноватости, жидкость разрыва должна хорошо фильтроваться через пористую среду. При гидроразрыве пластов с развитой системой естественных трещин следует применять жидкости, не фильтрующиеся или фильтрующиеся с быстрым снижением скорости фильтрации.

К жидкости-песконосителю, помимо общих требований, предъявляются следующие: она должна иметь минимальную фильтруемость и такую вязкость, которая бы давала возможность удерживать песок во взвешенном состоянии. Высокая удерживающая способность жидкости-песконосителя должна предупредить возможность оседания песка на пути движения песконосителя до забоя, а также потерю подвижности песка в самой трещине.

Повышение вязкости и уменьшение фильтруемости жидкостей достигают введением в них добавок. Такими добавками для углеводородных жидкостей являются соли органических кислот, высокомолекулярные и коллоидные соединения нефтей.

Продавочные жидкости закачивают в скважину только для того, чтобы довести жидкость-песконоситель до забоя скважины. Таким образом, объем продавочной жидкости равен объему НКТ, через которые ведется закачка жидкости-песконосителя. К расчетному объему НКТ прибавляется объем затрубного пространства между башмаком НКТ и верхними дырами фильтра. Продавочная жидкость при всех условиях должна иметь минимальную вязкость в целях снижения потерь напора при прокачке. В качестве продавочной жидкости используется практически любая недорогая жидкость, имеющаяся в достаточном количестве, и чаще всего обычная вода.

Наполнитель служит для заполнения образовавшихся трещин и предупреждения их смыкания при снятии давления и должен удовлетворять следующим требованиям:

  • иметь достаточную механическую прочность, чтобы не разрушаться в трещинах под действием веса пород;

  • сохранять высокую проницаемость.

Этим условиям удовлетворяет хорошо окатанный однородный кварцевый песок. Однако песок имеет очень большую плотность, которая сильно отличается от плотности жидкости, что способствует его оседанию из потока жидкости и затрудняет заполнение трещин. В связи с этим в мировой практике в последнее время находят применение в качестве наполнителя стеклянные шарики, а также зерна боксита соответствующего размера и молотая скорлупа грецкого ореха. Применяются наполнители из особо прочных искусственных синтетических полимерных веществ, имеющих плотность, близкую к плотности жидкости песконосителя.

Технология гидравлического разрыва пласта.

Для гидравлического разрыва пласта выбирают следующие скважины:

  • с низкой продуктивностью;

  • с высоким пластовым давлением, но с низкой проницаемостью коллектора;

  • с загрязненной призабойной зоной;

  • с высоким газовым фактором;

  • нагнетательные с низкой приемистостью;

  • нагнетательные для расширения интервала поглощения.

Не рекомендуются проводить гидроразрыв в скважинах, технически неисправных и расположенных близко от контура водоносности или от газовой шапки.

Для выяснения приемистости скважины и величины ожидаемого давления разрыва необходимо предварительно испытать скважину на поглощение при различных давлениях и определить опытным путем давление на разрыв и расход жидкости разрыва. Такое испытание проводят путем закачки в скважину маловязкой жидкости в нарастающих объемах.

Перед началом работ забой скважины необходимо очистить лучше всего промывкой. В отдельных случаях для улучшения фильтрационных свойств пластов рекомендуется проводить соляно-кислотную или грязевую обработку и дополнительную перфорацию. Эти мероприятия снижают давление разрыва и повышают его эффективность. Наилучший эффект дает гидропескоструйная перфорация интервала, намеченного для разрыва.

После очистки в скважину спускают насосно-компрессорные трубы, чтобы при продавке иметь меньше потери давления. Для предохранения обсадной колонны от воздействия большого давления над разрываемым пластом иногда устанавливают пакер. При больших давлениях при гидоразрыве на пакер снизу действуют очень большие усилия. Для предотвращения сдвига пакера по колонне на трубах выше пакера устанавливают гидравлический якорь.

После спуска труб с пакером и якорем на устье скважины устанавливают головку, к которой и подключают насосные агрегаты для нагнетания.

Вначале жидкость разрыва закачивают насосными агрегатами. По мере закачки давление постепенно повышается. В момент, когда давление на забое достигнет определенной величины, пласт разорвется и образуется трещина. Момент разрыва обнаруживается по резкому спаду давления на манометре, установленном на выкидной линии. После разрыва давление на устье падает, а расход нагнетаемой жидкости сильно возрастает – начинает работать трещина и скважина начинает принимать жидкости больше, чем она принимала перед разрывом.

После разрыва пласта переходят к нагнетанию жидкости-песконосителя. Наибольший эффект достигается при закачке жидкости-песконосителя с большими скоростями и при высоких давлениях нагнетания.

Затем жидкость с песком продавливают в пласт путем нагнетания продавочной жидкости при максимальном давлении и с максимальной скоростью, для обеспечения быстрейшего заполнения трещин песком. Для этого подключают наибольшее число насосных агрегатов. Количество продавочной жидкости должно быть равно емкости колонны труб. При прокачке излишнего количества продавочной жидкости она может оттеснить песок в глубь пласта и после снятия давления трещина в непосредственной близости к забою скважины может сомкнуться, тогда эффект от разрыва может быть сведен к нулю.

В качестве продавочной жидкости используют нефть для нефтяных и воду для нагнетательных. После продавки устье закрывают и скважину оставляют в покое, пока давление на устье не упадет до нуля. Затем скважину промывают, очищая от песка, и приступают к освоению.

Водяные нагнетательные скважины после промывки некоторое время поршнюют для извлечения из трещин закачанной вязкой жидкости.

Большие масштабы внедрения гидравлического разрыва пластов и широкие теоретические и экспериментальные исследования, проведенные в этой области, способствовали совершенствованию и разработке различных технологических схем.

В зависимости от геомеханических и эксплуатационных характеристик нефтяного пласта или отдельных продуктивных объектов, а также в зависимости от условия рентабельности самой технологической схемы выбирается та или другая разновидность метода гидравлического разрыва пластов.

Разновидность гидравлического разрыва определяется направлением и числом трещин. Направлением трещин обусловлен горизонтальный и вертикальный гидравлические разрывы пласта, а числом их – многократный (селективный) или поинтервальный.

Кроме того, существуют и гидроразрывы следующих видов: гидравлический разрыв с магнием, гидравлический разрыв в сочетании с пескоструйной перфорацией, многоэтапный разрыв с кислотой без ввода песка в трещину.

Оборудование для гидравлического разрыва пласта.

При гидравлическом разрыве применяют комплекс оборудования, в который входят: насосные агрегаты, пескосмесительные машины, автоцистерны для транспортировки жидкостей разрыва, арматура устья скважины, пакеры, якори и другое вспомогательное оборудование. Основное оборудование – насосные агрегаты. Они монтируются на шасси трехосных тяжелых грузовых машин грузоподъемностью 10 – 12 т.

Для приготовления смеси жидкости с песком применяют пескосмесительные агрегаты, иногда со сложными автоматическими дозирующими жидкость и песок устройствами. Агрегаты монтируются на шасси тяжелого грузовика.

Тепловые методы воздействия на призабойную зону скважины. Тепловая обработка призабойной зоны скважины (ПЗС) целесообразна при добыче тяжелых вязких нефтей или нефтей с высоким содержанием парафина и асфальтосмолистых компонентов (более 5 - 6%). Поскольку тепловая обработка ПЗС, как правило, осуществляется периодически, то скважины должны быть сравнительно неглубокими (до 1300 м), чтобы после извлечения из скважины нагревательного оборудования можно было начать откачку жидкости при достаточно высокой температуре на забое. Отложение парафина и асфальтосмолистых веществ происходит в ПЗС на расстояниях до 2,5 м от стенок скважины, т. е. в зоне наиболее резкого изменения давления. Это приводит к сильному увеличению фильтрационных сопротивлений и снижению дебитов скважин. Призабойную зону скважины прогревают двумя способами: закачкой в пласт на некоторую глубину теплоносителя - насыщенного или перегретого пара, растворителя, горячей воды или нефти; спуском на забой скважины нагревательного устройства - электропечи или специальной погружной газовой горелки. Второй способ проще и дешевле. Кроме того, электропрогрев ПЗС не сопровождается внесением в пласт теплоносителя - воды или пара, конденсата, которые могут взаимодействовать с глинистыми компонентами пласта. Однако электропрогревом, вследствие малой теплопроводности горных пород, не удается прогреть более или менее значительную зону, и радиус изотермы с избыточной температурой 40 °С, как показывают расчеты и исследования, едва достигает 1 м.

Назначение и методы исследования скважин. Исследование скважин при установившихся режимах. Исследования на установившихся режимах.Исследование методом установившихся отборов проводится на добывающем и нагнетательном фондах скважин с регистрацией параметров не менее чем на 3-х установившихся режимах для определения продуктивности скважины, потенциала пласта и пластового давления в области дренирования вертикальных, горизонтальных скважин.Исследование методом отборов (ИД)Исследование методом закачек (ИД).Исследование методом отборов (ИД)-Исследование методом индикаторной диаграммы проводится на добывающих скважинах с регистрацией на каждом режиме и при переходных процессах при смене режимов следующих параметров:Давление на забое (динамический уровень) на различных режимах работы скважины.Дебит добывающей жидкости на различных режимах работы скважины.Обводненность продукции скважины на каждом режиме.Результаты:Продуктивность скважины;Пластовое давление.Исследование методом закачек (ИД).-Исследование методом индикаторной диаграммы проводится на нагнетательных скважинах с регистрацией на каждом режиме и при переходных процессах при смене режимов следующих параметров:Давление на забое на различных режимах работы скважины.Расход закачиваемой жидкости на различных режимах работы скважины.Результаты:Модель течения в пласте;Наличие и параметры техногенной трещины;Проницаемость, гидропроводность, пьезопроводность, пласта;Радиус влияния скважины (радиус исследования);Скин-эффект;Приемистость скважины;Пластовое давление.

Исследование скважин при установившихся и неустановившихся режимах работы скважин.Исследования на неустановившихся режимах.Исследование проводится для оценки фильтрационных параметров и потенциала пласта, продуктивности скважины, установления геологических неоднородностей, границ пласта в области дренирования вертикальных, горизонтальных скважин.КВД (КВУ).КПД.КВД (КВУ)-Исследование методом восстановления давления проводится на добывающих скважинах при регистрации давления во времени после остановки стабильно или циклически работающей скважины в режиме отбора. Контролируемые параметры:Давление на забое (динамический уровень) и его восстановление после закрытия и остановки скважины.Дебит добывающей жидкости в период работы скважины, до ее остановки.Обводненность продукции скважины.Результаты:Модель течения в пласте, параметры для модели течения;Проницаемость, гидропроводность, пьезопроводность пласта;Радиус влияния скважины (радиус зоны дренирования скважины);Скин-эффект;Продуктивность скважины и ее гидродинамическое совершенство;Удаленность границ, модель границ;Полудлина трещины (для скважин с ГРП);Пластовое давление;КПД-Исследование методом падения давления проводится на нагнетательной скважине при регистрации давления во времени после остановки стабильно или циклически работающей скважины в режиме закачки.Контролируемые параметры:Давление на забое и его падение после закрытия скважины.Дебит закачиваемой жидкости (приемистость скважины) в период работы скважины до ее закрытия и остановки.Обводненность.Результаты:Модель течения в пласте, параметры для модели течения;Проницаемость, гидропроводность, пьезопроводность;Радиус влияния скважины (радиус зоны дренирования скважины);Скин-эффект;Приемистость скважины;Удаленность границ, модель границ;Пластовое давление.

Основы теории движения газожидкостных смесей в скважине. Характеристические кривые работы газожидкостного подъемника.Подъем жидкости из скважин нефтяных месторождений практически всегда сопровождается выделением газа. Поэтому для понимания процессов подъема жидкости из скважин, умения проектировать установки для подъема и выбирать необходимое оборудование, надо знать законы движения газожидкостных смесей (ГЖС) в трубах. При всех известных способах добычи нефти приходится иметь дело с движением газожидкостных смесей либо на всем пути от забоя до устья, либо на большей части этого пути. Эти законы сложнее законов движения однородных жидкостей в трубах и изучены хуже. Если при движении однофазного потока приходится иметь дело с одним опытным коэффициентом λ (коэффициент трения), то при движении двухфазного потока - газожидкостных смесей приходится прибегать по меньшей мере к двум опытным характеристикам потока, которые в свою очередь зависят от многих других параметров процесса и условий движения, многообразие которых чрезвычайно велико. . Физика процесса движения газожидкостной смеси в вертикальной трубе. Зависимость подачи жидкости от расхода газа Качественную характеристику процесса движения газожидкостной смеси (ГЖС) в вертикальной трубе легче уяснить из следующего простого опыта Представим, что трубка 1 длиною L погружена под уровень жидкости неограниченного водоема на глубину h. К нижнему открытому концу трубки, который по аналогии с промысловой терминологией будем называть башмаком, подведена другая трубка 2 для подачи с поверхности сжатого газа. На трубке имеется регулятор расхода 3, с помощью которого можно установить желаемый расход газа. Принципиальная схема газожидкостного подъемника Давление у башмака подъемной трубки 1 будет равно гидростатическому на глубине h - P1 = rgh и, очевидно, не будет изменяться от того, много или мало газа подается к башмаку. По трубке 2 подается газ, и в трубке 1 создается газожидкостная смесь средней плотности rс, которая поднимается на некоторую высоту H. Поскольку внутренняя полость трубки 1 и наружная область являются сообщающимися сосудами, имеющими на уровне башмака одинаковые давления, то можно написать равенство откуда Плотность смеси в трубке rс зависит от расхода газа V. Чем больше V, тем меньше rс. Изменяя V, можно регулировать Н. При некотором расходе V = V1 величина Н может достигнуть L. При V<V1 H<L. При V>V1 H>L и наступит перелив жидкости через верхний конец трубки 1. При дальнейшем увеличении V расход поступающей на поверхность жидкости q увеличится. Однако при непрерывном увеличении V расход жидкости не будет увеличиваться непрерывно, так как под воздействием неизменяющегося перепада давления DР = Р1 - Р2 (Р1 = const, так как h = const), труба определенной длины L и диаметра d должна пропускать конечное количество жидкости, газа или газожидкостной смеси. Таким образом, при некотором расходе газа V=V2 дебит достигнет максимума q = q max. Можно представить другой крайний случай, когда к башмаку подъемной трубы подводится так много газа, что при постоянном перепаде давления DР = Р1 - Р будет идти только газ, DР будет расходоваться на преодоление всех сопротивлений, вызванных движением по трубе чистого газа. Расход этого газа пусть будет V=V3. Если к башмаку подать еще больший расход (V>V3), то излишек газа не сможет пройти через подъемную трубу, так как ее пропускная способность при данных условиях (L, d, DP) равна только V3, и устремится мимо трубы, оттесняя от башмака жидкость. Очевидно, при этом расход жидкости будет равен нулю (q = 0). Таким образом, из этого опыта можно сделать следующий вывод. 1. При V<V1 q = 0 (H < L). 2. При V = V1 q = 0 (H = L) (начало подачи). 3. V1 < V < V2 0 < q < qmax (H > L), 4. При V = V2 q = qmax (точка максимальной подачи). 5. При V2 < V < V 3 qmax > q > 0. 6. При V = V3 q = 0 (точка срыва подачи). Обычно правая ветвь кривой q(V) (рис. 7.2) пологая, левая крутая. Зависимость подачи q газожидкостного подъемника от расхода газа V Для всех точек кривой постоянным является давление P1, так как погружение h в процессе опыта не изменялось. Существует понятие - относительное погружение e = h / L. Таким образом, для данной кривой ее параметром будет величина относительного погружения ε. 7.1.2. Зависимость положения кривых q (V) от погружения Поскольку при наших рассуждениях никаких ограничений на величину e не накладывалось, то при любых e, лежащих в пределах 0 < e < 1, вид соответствующих кривых q(V) будет одинаковый. При увеличении е новые кривые q(V) обогнут прежнюю, так как с ростом h потребуется меньший расход газа для наступления перелива. По тем же причинам возрастет qmax, а точка срыва подачи на соответствующих кривых сместится вправо. При уменьшении e все произойдет наоборот. Новые кривые q(V) расположатся внутри прежних и при e = 0 кривая q(V) выродится в точку. Другой предельный случай - e = 1 ( h = L, 100% погружения). В этом случае при бесконечно малом расходе газа немедленно произойдет перелив. Точка начала подачи сместится в начало координат. Кривая q(V) для e = 1 начнется в начале координат и обогнет все семейство кривых. Таким образом, каждый газожидкостный подъемник характеризуется семейством кривых q(V), каждая из которых будет иметь свой параметр e Семейство кривых q(V) для газожидкостного подъемника данного диаметра Зависимость положения кривых q(V) от диаметра трубы В наших рассуждениях никаких ограничений на диаметр подъемной трубы и на ее длину не накладывается. Поэтому аналогичное семейство кривых q(V) должно существовать для подъемников любого диаметра и любой длины. Однако возникает вопрос, как располагать повое семейство кривых для трубы диаметром d2 > d1 по отношению к прежним кривым. Увеличение диаметра потребует большого расхода газа, так как Семейство кривых q(V) для двух газожидкостных подъемников различных диаметров объем жидкости, который необходимо разгазировать для достижения данной величины rс, при прочих равных условиях ( h = const, L = const) возрастает пропорционально d2. Пропускная способность трубы по жидкости, газу или газожидкостной смеси (ГЖС) также возрастет. Поэтому для увеличенного диаметра будет существовать также семейство кривых q(V), все точки которого будут смещены вправо, в сторону увеличенных объемов, кроме одной точки, совпадающей с началом координат для кривой q(V) при e = 1. В каждом из этих семейств и любых других, кривые q(V) при значениях e, близких к единице и к нулю, не имеют практического значения, так как они либо неосуществимы (e = 0), либо бессмысленны (e = 1), и введены в рассуждения только для понимания физики процессов, происходящих при движении ГЖС в трубах. 7.1.4. К. п. д. процесса движения ГЖС На каждой кривой q(V) имеется еще одна характерная и очень важная точка, точка так называемой оптимальной производительности, соответствующая наибольшему к. п. д. Если проанализировать произвольную кривую q(V), для которой e = const, то для нее будут справедливы следующие рассуждения.

Коэффициент полезного действия процесса движения газожидкостных смесей в скважине.Из определения понятия к. п. д. следует, что Полезная работа заключается в поднятии жидкости с расходом q на высоту L - h, так что

Зависимость удельного расхода газа от общего расхода газа в теории движения газожидкостных смесей в скважине. Удельным расходом газа называют отношение Из определения следует, что для точек начала и срыва подачи, когда q = 0, а V > 0, удельный расход R обращается в бесконечность. Для режима оптимальной подачи, когда к. п. д. максимален, R минимально. Это очевидно, так как при максимальном Зависимость удельного расхода газа R от общего расхода газа V для данной кривой q (V) к. п. д. должно расходоваться минимально возможное количество газа на подъем единицы объема жидкости. При режиме максимальной подачи (qmax) η < ηmax. Поэтому и удельный расход газа R будет при этом режиме больше оптимального. Величина R может быть получена для любой точки кривой q(V) путем деления абсциссы на ординату данной точки (рис. 7.5). 7.1.6. Зависимость оптимальной и максимальной подач от относительного погружения

Основы теории движения газожидкостных смесей в скважине. Идеальный, полуидеальный лифт.

Структура потока ГЖС в вертикальной трубе

В зависимости от физических свойств жидкости и характера ввода газа в поток могут возникать различные структуры движения ГЖС в трубе, которые существенным образом влияют на энергетические показатели подъема жидкости. В фонтанных скважинах на участке НКТ, где давление меньше давления насыщения, выделяющийся из нефти свободный газ образует тонкодисперсную структуру, называемую эмульсионной. Мелкие газовые пузырьки более или менее равномерно пронизывают массу нефти, образуя практически однородную квазигомогенную смесь газа и жидкости. Вследствие своей малости (доли мм) и большой плотности газовые пузырьки обладают малой архимедовой силой. Поэтому их скорость всплытия относительно жидкости пренебрежимо мала и в расчетах может не учитываться. Это происходит до тех пор, пока в результате уменьшения давления при движении смеси вверх по трубе газовые пузырьки, расширяясь, увеличивают объемное газосодержание потока до 20-25%. При дальнейшем уменьшении давления и поступлении из нефти новых количеств газа пузырьки, сливаясь, образуют шарообразные формы (глобулы) больших размеров, измеряемые в диаметре несколькими сантиметрами. Скорость всплытия таких глобул в результате действия таких глобул в результате действия архимедовой силы становится большой, достигая нескольких десятков сантиметров в секунду. Это ухудшает энергетические показатели процесса подъема. Такая структура называется четочной.

При больших расходах газа возникает стержневая структура, при которой газ с распыленными в нем каплями жидкости движется непрерывным потоком, увлекая за собой по стенкам трубы волнистую пленку жидкости. При стержневой структуре движения скорость газа по отношению к жидкости достигает нескольких метров в секунду.

Между эмульсионной, четочной и стержневой структурами не существует резких границ перехода, на возникновение той или иной структуры существенной влияние оказывает вязкость нефти, а также наличие в ней различных ПАВ, способствующих диспергации (измельчению) газа в потоке (рис. 7).

Рисунок 7. Структуры газожидкостного потока:

а – эмульсионная; б – четочная, в – стержневая

Основы теории движения газожидкостных смесей в скважине. Истинное газосодержание. Расходное газосодержание.Истинное газосодержание потока ГЖС учитывает скольжение газа и поэтому является отношением площади, занятой газом fг, ко всему сечению трубы f: , Расходное газосодержание потока ГЖС определяется как отношение объемного расхода газа V к общему расходу смеси V+q:

Уравнение баланса давлений при движении газожидкостной смеси в скважине. При проектировании или анализе работы установок для подъема жидкости из скважин, когда по НКТ движется ГЖС, основным вопросом является определение потерь давления, связанных с этим движением. Рассматривая некоторый участок вертикальной трубы, в которой движется ГЖС, можно записать где Р1 - давление в нижней части трубы, Рс - давление, уравновешивающее гидростатическое давление столба ГЖС, Ртр - потери давления на преодоление сил трения при движении ГЖС, Рус - потери давления на создание ускорения потока ГЖС, так как его скорость при движении в сторону меньших давлений увеличивается из-за расширения газа; Р2 - противодавление на верхнем конце трубы. Уравнение (7.8) справедливо для всех случаев: короткой и длинной трубы, вертикальной и наклонной и является основным при расчете потерь давления и их составляющих.

Плотность реальной и идеальной смеси при движении газожидкостной смеси в скважине.случай соответствует идеальным условиям, при которых образуется идеальная смесь плотностью ρи. Относительная скорость газа (по отношению к жидкости) или . Поскольку а > 0, то b > 1. Увеличение скорости газа при неизменном объемном расходе V уменьшает fг, следовательно, увеличивает fж. В результате плотность смеси, как это следует из (7.18) и (7.19), увеличивается. Таким образом, явление скольжения газа (a > 0) при неизменных объемных расходах q и V приводит к утяжелению смеси по сравнению с идеальным случаем. Поэтому чем больше а, тем больше потребуется давление на забое для поднятия данного количества жидкости.Плотность реальной смеси где Δρ - увеличение плотности смеси, обусловленное скольжением.