Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция №1 - Биология. человек.медицина.doc
Скачиваний:
19
Добавлен:
23.09.2019
Размер:
134.14 Кб
Скачать

Основные свойства живых систем.

1. Обмен веществ и энергии. Все живые организмы используют внешние источники энергии в виде пищи, света и т.д. Основу обмена веществ составляют взаимосвязанные и сбалансированные процессы ассимиляции и диссимиляции. При этом непрерывный поток веществ сопровождается непрерывным потоком энергии. Осуществление этих процессов обусловлено каталитической активностью белков.

2. Наследственность. Это свойство заключается в способности сохранять и передавать наследственную информацию из поколения в поколение. Наследственность обусловлена относительной стабильностью, т.е. постоянством строения молекул ДНК. Таким образом, наследственность, основанная на потоке информации, тесно связана с ауторепродукцией на молекулярном, субклеточном и клеточном уровнях.

3. Репродукция. Способность к самовоспроизведению является важнейшим свойством всех живых существ. « Все живое происходит только от живого» этот термин означает , что жизнь возникла путем самозарождения лишь однажды и с тех пор начало живому дает только живое. На молекулярном уровне самовоспроизведение осуществляется на основе матричного синтеза ДНК. НА клеточном уровне это обеспечивается различными типами деления митозом или мейозом. Поддержание жизни базируется на способности отдельных особей размножаться. И, таким образом, ограниченное во времени существование не сказывается на общей биомассе оболочки Земли.

4. Изменчивость. Стабильность наследственной информации в природе весьма относительна. Изменения ее на различных уровнях – генных, хромосомных, геномных лежат в основе наследственной изменчивости. Она же наряду с другими факторами (естественным отбором, генным потоком и т.д.) обеспечивает эволюцию органического мира. Чаще всего мутации вредны, но в ряде случаев, организм приобретает полезные свойства (1:1000), которые подхватываются и закрепляются отбором, приводя к видообразованию, а значит к существованию жизни.

5. Индивидуальное развитие. Любая живая система – клетка, особь проходит через свой онтогенез, в основе которого лежит реализация генетической информации. Она основана на избирательной активности генов на различных стадиях индивидуального развития (поля и время действия генов). Фенотипически онтогенез выражается, например, в увеличении массы клеток (рост); в развитии (наступление половой зрелости) и т.д.

6. Филогенетическое развитие. Любой онтогенез есть краткое повторение исторического развития. В основе закономерностей филогенеза лежат элементарные эволюционные факторы (наследственная изменчивость, естественный отбор и т.д.), приводящие к появлению огромного разнообразия форм жизни от доклеточных до многоклеточных, вплоть до человека. Вместе с биологической формой существования материи появилась и социальная, в силу чего Homo sapiens представляет собой биосоциальный организм.

  1. Раздражимость- свойство отражения любой информации из внешней среды любой биологической системы. Это свойство позволяет избирательно реагировать на изменяющиеся условия и адаптироваться к ним.

  2. Дискретность и целостность- всеобщее свойство живой материи. Любая биологичекая система состоит из отдельных, но взаимодействующих частей, образующих структурно-функциональное единство. Любой организм представляет собой целостную систему, которая однако объединяет дискретные частицы ( клетки, ткани, органы системы органов). Органический мир целостен, поскольку существование одних органов зависит от других. В тоже время он дискретен, складываясь из отдельных организмов.

Самым показательным примером дискретности и целостности являются существующие в природе уровни организации живой материи:

Молекулярный ( молекулярно- генетический). объектом изучения на этом уровне являются молекулы биополимеров ( слайд № 5 ) Элементарной единицей молекулярного уровня является участок молекулы ДНК, реже РНК) – ген, несущий определенный объем информации. Благодаря способности ДНК к редупликации происходит сохранение и передача информации последующим генерациям клеток, особей. В результате мутаций при репликации (ошибок синтеза ДНК) возникают изменения в генах, появляются новые белки-ферменты и появляются новые признаки.

Субклеточный. Объект исследования на этом уровне – отдельные структуры клетки, например, органоиды, в которых происходят основные процессы метаболизма клетки. Так реализация генетической информации (этап трансляции) осуществляется в рибосомах, синтез сложных соединений – гликолипидов, гликопротеидов – в полостях аппарата Гольджи. Процессы расщепления биополимеров протекают в других субклеточных структурах – лизосомах. Каждый клеточный компонент выполняет строго определенные функции (дискретность), обеспечивая, в целом, все жизненные, биологические проявления (целостность) на клеточном, а затем и последующих уровнях (слайд:– органоиды, ЭМ).

Клеточный (слайд 7 – клетка, ЭМ). Объект исследования – про- и эукариотическая клетка. Клетка является структурной и функциональной единицей живых систем, а также единицей развития. Вещества, поступающие в клетку, превращаются в субстраты и энергию, которые используются клеткой на строительные, защитные, каталитические и другие функции. Таким образом, реакции клеточного метаболизма создают основу жизни на других уровнях, прежде всего, на тканевом.

Тканевой (слайд 8 – различные ткани). Объект исследования этого уровня – ткани. В процессе эмбрионального развития на основе избирательной активности генов возникают различия между популяциями клеток, клетки становятся специализированными и образуют 4 типа тканей: – эпителиальная, соединительная, нервная, мышечная При этом каждая ткань запрограммирована на определенные свойства и функции: эпителиальные – покрывают наружные и выстилают внутренние органы; соединительная – выступает во многих ролях: основа костей, хрящей, крови и пр.; нервная ткань обладает уникальными свойствами – раздражимости и проводимости, а потому из нее развивается нервная система, призванная обеспечить быструю связь между разными частями организма. Наконец, мышечная ткань обладает другим свойством – сократимостью, благодаря которому возможны разнообразные движения.

Из различных тканей (чаще всего всех) формируются в процессе морфогенеза отдельные органы – сердце, печень и др. Такой уровень организации жизни называется органным.

Совокупность (комплекс) органов, подчиняющихся различным формам регуляции – нервной, гуморальной, генной, дает организменный уровень организации живого. На этом уровне обнаруживается труднообозримое многообразие форм. Так, современная флора и фауна представлена 2млн. видов (1,5 – животные, 0,5 – растения). Элементарной единицей организменного уровня является особь, онтогенез которой протекает с момента образования зиготы до прекращения существования в качестве живой системы. Этот уровень еще называют онтогенетическим. Именно на этом уровне заканчивается реализация генетической программы и формируется определенный фенотип данного биологического вида. Именно на этом уровне можно наблюдать возрастную изменчивость, основанную на времени действия генов.

Совокупность особей одного вида, занимающая определенный ареал обитания, образует следующий уровень организации жизни – популяционно-видовой. Это надорганизменная система, в которой осуществляется свободное скрещивание, и потому эта система генетически открытая. В такой системе осуществляются элементарные эволюционные преобразования.

Популяции разных видов не могут жить изолированно друг от друга и вне связи с окружающей средой. Поэтому в процессе эволюции сложились устойчивые сообщества – биогеоценозы, характеризующиеся определенными абиотическими показателями и образующие биогеоценотический уровень организации жизни. В каждом биогеоценозе осуществляется круговорот веществ и энергии, ведущая роль в котором принадлежит живым системам.

Биогеоценоз – это открытая для веществ и энергии система, поэтому объединяясь в единый комплекс они образуют глобальный уровень организации жизни – биосферный. Этот уровень охватывает все явления жизни на нашей планете и в круговороте веществ и энергии участвуют все живые системы.

Следует отметить, что хотя все уровни организации живого узнаваемы, они тесно связаны между собой, вытекают один из другого, что и говорит о целостности живой природы.

Представления об уровнях организации жизни имеют прямое отношение к медицине: на больного следует смотреть с позиций дискретности и в то же время целостности живой системы. Хорошие знания структур и функций каждого уровня жизни обеспечат безошибочную диагностику. Знание человеческих популяций бесспорно помогает в определении наследственной патологии, а особенностей биогеоценозов позволяет предполагать характер того или иного эпидемиологического процесса.

Клетка- основа жизни.

Первые исследования клеток были проведены в 1665г. англ. Р.Гук рассматривая под микроскопом срез пробки, обнаружил, что она состоит из ячеек и назвал их клетками. Ячеистое строение он обнаружил и у др. растений бузины, камыша и т.д.

Мальпиги и Грю описали клеточную оболочку. Левенгук обнаружил одноклеточные организмы.

Пуркинье- цитоплазму, Броун –ядро.

Дальнейший этап развития учения о клетке связан с созданием клеточной теории. 1838г. Шлейден пришел к выводу, что растения состоят из клеток. 1 839 году к такому же выводу относительно животных клеток пришел Шванн.

Опираясь на данные том, что клетки животных и растений имеют ядра они сформулировали клеточную теорию.

  1. Клетка является главной структурной единицей всего живого.

  2. Животные и растительные организмы имеют клеточное строение.

  3. Выдающийся вклад в развитие клеточной теории внес Вирхов в 1858 году вышел его труд « Целлюлярная патология». Клетка от клетки –этот постулат означает, что клетки может возникнуть лишь из предшествующей клетки и другие пути появления клеток отсутствуют.

  4. Вне клетки жизни нет.

  5. Большой вклад в развитие клеточной теории сыграли труды русских исследователей К. Бер описал оплодотворенную яйцеклетку- зиготу. Доказав, что в основе многоклеточного организма лежит одна клетка- зигота из которой развиваются клетки, ткани и органы организма.

  6. Исследования Сеченова , Боткина, Павлова показали, что организм это не просто сумма клеток ( как ошибочно считал Вирхов) – это целостная система, части которой функционируют благодаря деятельности нервной и гуморальной систем.

Эти и многие другие открытия помогли сформулировать современные положения клеточной теории:

1.Клетка является структурно-функциональной единицей, а также единицей развития всех живых организмов.

2. Клетками присуще мембранное строение.

3. Ядро-главная составляющая часть клетки.

4. Клетки размножаются только делением.

5. Клеточное строение организма- свидетельство того, что растения и животные имеют единое происхождение.