Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ-Схемотехника (новые билеты).docx
Скачиваний:
17
Добавлен:
23.09.2019
Размер:
1.6 Mб
Скачать

2. Характеристики ацп.

Разрешение АЦП — минимальное изменение величины аналогового сигнала, которое может быть преобразовано данным АЦП — связано с его разрядностью. В случае единичного измерения без учёта шумов разрешение напрямую определяется разрядностью АЦП.

Разрядность АЦП характеризует количество дискретных значений, которые преобразователь может выдать на выходе. В двоичных АЦП измеряется в битах, в троичных АЦП измеряется в тритах. Например, двоичный АЦП, способный выдать 256 дискретных значений, имеет разрядность 8 бит, поскольку 28 = 256, троичный АЦП, имеющий разрядность 8 трит, способен выдать 6 561 дискретное значение, поскольку 38 = 6561.

Разрешение по напряжению равно разности напряжений, соответствующих максимальному и минимальному выходному коду, делённой на количество выходных дискретных значений. Например:

Пример

Диапазон входных значений = от 0 до 10 вольт

Разрядность двоичного АЦП 12 бит: 212 = 4096 уровней квантования

Разрешение двоичного АЦП по напряжению: (10-0)/4096 = 0,00244 вольт = 2,44 мВ

Разрядность троичного АЦП 12 трит: 312 = 531 441 уровень квантования

Разрешение троичного АЦП по напряжению: (10-0)/531441 = 0,0188 мВ = 18,8 мкВ

На практике разрешение АЦП ограничено отношением сигнал/шум входного сигнала. При большой интенсивности шумов на входе АЦП различение соседних уровней входного сигнала становится невозможным, то есть ухудшается разрешение. При этом реально достижимое разрешение описывается эффективной разрядностью, которая меньше, чем реальная разрядность АЦП. При преобразовании сильно зашумлённого сигнала младшие разряды выходного кода практически бесполезны, так как содержат шум. Для достижения заявленной разрядности отношение С/Ш входного сигнала должно быть примерно 6 дБ на каждый бит разрядности.

Точность. Ошибки квантования являются следствием ограниченного разрешения АЦП. Этот недостаток не может быть устранён ни при каком типе аналого-цифрового преобразования. Абсолютная величина ошибки квантования при каждом отсчёте находится в пределах от нуля до половины МЗР.

К ак правило, амплитуда входного сигнала много больше, чем МЗР. В этом случае ошибка квантования не коррелирована с сигналом и имеет равномерное распределение. Её среднеквадратическое значение совпадает с среднеквадратичным отклонением распределения, которое равно . В случае 8-битного АЦП это составит 0,113 % от полного диапазона сигнала.

Нелинейность. Всем АЦП присущи ошибки, связанные с нелинейностью, которые являются следствием физического несовершенства АЦП. Это приводит к тому, что передаточная характеристика (в указанном выше смысле) отличается от линейной (точнее от желаемой функции, так как она не обязательно линейна). Ошибки могут быть уменьшены путём калибровки.

Важным параметром, описывающим нелинейность, является интегральная нелинейность (INL) и дифференциальная нелинейность (DNL).

Частота дискретизации. Аналоговый сигнал является непрерывной функцией времени, в АЦП он преобразуется в последовательность цифровых значений. Следовательно, необходимо определить частоту выборки цифровых значений из аналогового сигнала. Частота, с которой производятся цифровые значения, получила название частота дискретизации АЦП.

Непрерывно меняющийся сигнал с ограниченной спектральной полосой подвергается оцифровке (то есть значения сигнала измеряются через интервал времени T — период дискретизации) и исходный сигнал может быть точно восстановлен из дискретных во времени значений путём интерполяции. Точность восстановления ограничена ошибкой квантования. Однако в соответствии с теоремой Котельникова-Шеннона точное восстановление возможно только если частота дискретизации выше, чем удвоенная максимальная частота в спектре сигнала.

Поскольку реальные АЦП не могут произвести аналого-цифровое преобразование мгновенно, входное аналоговое значение должно удерживаться постоянным по крайней мере от начала до конца процесса преобразования (этот интервал времени называют время преобразования). Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения — УВХ. УВХ, как правило, хранит входное напряжение в конденсаторе, который соединён со входом через аналоговый ключ: при замыкании ключа происходит выборка входного сигнала (конденсатор заряжается до входного напряжения), при размыкании — хранение. Многие АЦП, выполненные в виде интегральных микросхем содержат встроенное УВХ.

3. Для того чтобы определить, какие переключатели замкнуты, воспользуемся методом последовательного приближения. Коммутируемые выводы обеспечивают напряжения: 1 разряд = 5В; 2 разряд = 2,5В; 3 разряд = 1,25В; 4 разряд = 0,625В;

5 разряд = 0,3125В;

6 разряд = 0,15625В;

Так как 5,9735В>5В, следовательно 1 разряд = 1. После замыкания 2 разряда получаем высокое напряжение. Замыкаем 3 разряд, также получаем высокое напряжение. Замыкаем 4 разряд, на выходе получаем напряжение, равное 5,625В. Замыкаем 5 разряд получаем на выходе требуемое напряжение, это соответствует коду 100110.

№_____16______

1. Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и куча выходов. Демультиплексор — устройство, в котором сигналы с одного информационного входа поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода (устройство, которое преобразует последовательный код в параллельный).

Демультиплексоры – цифровые многопозиционные переключатели, также называемые коммутаторами. У демультиплексора может быть, например, 1 информационный вход, 4 управляющих входа (входа селекции) и 16 выходов. Это означает, что если на этот единственный вход подается какой-то цифровой сигнал, то его можно коммутировать на любой из этих 16 выходов. Для этого требуется выбрать нужный нам вход, подав на четыре входа селекции (т.е выбора номера канала, т.к 2 в четверной степени = 16) двоичный код адреса. Так, для передачи на выход данных от канала номер 9 следует установить код адреса 1001. Демультиплексоры также способны выбирать, селектировать определенный канал. Поэтому их иногда называют селекторами.

Демультиплексоры различаю по способам адресации, наличию входов разрешения и инверсных выходов.

Демультиплексоры (размножители сигналов) могут применяться в составе автоматизированных систем управления технологическими процессами, энергетических объектов, в аппаратуре технической диагностики, для комплексной автоматизации объектов атомной энергетики и в других областях промышленности.

Демультиплексор на 4 выхода

Из-за схожести структур мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексорром и демультиплексором, смотря с какой стороны подавать сигналы.

2. 6-разрядный ЦАП.

Основными параметрами и эле­ментами полного ЦАП являются: опорное напряжение, резисторы для обеспечения на­бора взвешенных напряжений, токов или коэффициентов усиления, переключатели для определения того, из каких "разрядов" будет складываться выходной сигнал, и пре­образователь для получения желаемого фор­мата выходных данных (напряжение или ток), уровня и полного сопротивления. К то­му же преобразователь требует наличия уп­равления переключателями и логического пе­ревода входного цифрового формата и уров­ней (на схеме не показано).

Поскольку суммирующая точка находит­ся в схеме на рис. 15.9 на виртуальной "зем­ле", при замыкании переключателя на соот­ветствующем резисторе оказывается напря­жение UОП. В результате ток, равный UОП/Rt протекает от суммирующей точки через со­противление, переключатель и источник опор­ного напряжения обратно к земле. Аналогич­но протекают токи от суммирующей точки операционного усилителя через другие цепи, в которых замкнуты переключатели. Един­ственный путь для суммарного тока - это резистор RВЫХ в цепи обратной связи. На­пряжение UВЫХ должно иметь соответствую­щее значение, при котором выполняется условие:

Следовательно, вклад i-го разряда в выход­ное напряжение:

Отношение RВЫХ/Ri эквивалентно "вкладу" в выходной сигнал разряда 2-i. На практике для преобразователей со сред­ней или высокой разрешающей способностью эта схема применяется довольно редко. Здесь она приведена только для пояснения принци­па действия. Широкий диапазон требуемых сопротивлений эффективно реализовать очень трудно. Кроме того, серьезные требования предъявляются к переключателям, у кото­рых должно обеспечиваться высокое отноше­ние сопротивления утечки в разомкнутом состоянии к последовательному сопротив­лению в замкнутом состоянии.

3. Рассчитать выходное напряжение на ОУ, работающего в режиме вычитателя, если V2=10, V1=5, Rf=1000, Rg=25000, R1=5 и R2=10.

Подставим в это выражения, условие, получим:

№_____17______