Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ШПОРЫ-Схемотехника (новые билеты).docx
Скачиваний:
17
Добавлен:
23.09.2019
Размер:
1.6 Mб
Скачать

1. Дешифратор. Применение.

Дешифраторы – микросхемы средней степени интеграции, предназначенные для преобразования двоичного кода в напряжение логического уровня, появляющееся в том выходном проводе, десятичный номер которого соответствует двоичному коду. Например, входной код должен сделать активным провод с номером 9. Во всех остальных проводах дешифратора сигналы должны быть нулевыми.

Дешифраторы также различают по емкости, по числу каналов, по типу построения (линейные, матричные) а также по формату входного кода (двоичный, двоично-десятичный).

Дешифраторы находят различное применение в вычислительной и информационно-вычислительной технике. Одно из них – управление индикаторами, отражающими знаковую информацию.

Дешифраторы применяют в различных устройствах обработки и передачи информации: в телемеханике, в вычислительной технике (декодирующие устройства, преобразователи представления величин), в радиотехнике и измерительной технике (детекторы, демодуляторы), в системах телефонной и телеграфной связи. Назначение предопределяет структуру, число входов и выходов Д., форму и последовательность входных и выходных сигналов.

Здесь представлен линейный дешифратор на 2 входа и, соответственно, 4 выхода и временные диаграммы, поясняющие его работу.

Линейные дешифраторы обладают высоким быстродействием, однако из-за ограниченного количества входов типового элемента серии разрядность дешифрируемого кода не велика.

При интегральном исполнении дешифратора количество выходов микросхемы лимитировано, поэтому на вход подается прямой код Xl+ Xm. Инверсные разряды кода формируются инверторами, находящимися внутри кристалла микросхемы. Во избежание искажений результатов дешифрации целесообразно синхронизировать работу дешифратора. С этой целью кодовая комбинация поступает на вход дешифратора по стробирующему импульсу, который подается только после установления разрядов кодов на входных винтелях. Используя входы управления при параллельном включении микросхемы, можно дешифрировать код большей разрядности.

2. Ацп. Применение.

Аналого-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП.

Как правило, АЦП — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

Применение АЦП в звукозаписи. АЦП встроены в большую часть современной звукозаписывающей аппаратуры, поскольку обработка звука делается, как правило, на компьютерах; даже при использовании аналоговой записи АЦП необходим для перевода сигнала в PCM-поток, который будет записан на компакт-диск.

Современные АЦП, используемые в звукозаписи, могут работать на частотах дискретизации до 192 кГц. Многие люди, занятые в этой области, считают, что данный показатель избыточен и используется из чисто маркетинговых соображений (об этом свидетельствует теорема Котельникова-Шеннона). Можно сказать, что звуковой аналоговый сигнал не содержит столько информации, сколько может быть сохранено в цифровом сигнале при такой высокой частоте дискретизации, и зачастую для Hi-Fi-аудиотехники используется частота дискретизации 44,1 кГц (стандартная для компакт-дисков) или 48 кГц (типична для представления звука в компьютерах). Однако широкая полоса упрощает и удешевляет реализацию антиалиасинговых фильтров, позволяя делать их с меньшим числом звеньев или с меньшей крутизной в полосе заграждения, что положительно сказывается на фазовой характеристике фильтра в полосе пропускания.

АЦП для звукозаписи, используемые в компьютерах, бывают внутренние и внешние. Также существует свободный программный комплекс PulseAudio для Linux, позволяющий использовать вспомогательные компьютеры как внешние ЦАП/АЦП для основного компьютера с гарантированным временем запаздывания.

Другие применения. Аналого-цифровое преобразование используется везде, где требуется обрабатывать, хранить или передавать сигнал в цифровой форме.

АЦП являются составной частью систем сбора данных.

Быстрые видео АЦП используются, например, в ТВ-тюнерах. (это параллельные и конвеерные АЦП)

Медленные встроенные 8, 10, 12 или 16-битные АЦП часто входят в состав микроконтроллеров. (как правило они строются по принципу поразрядного уравновешивания, точность их невысока)

Очень быстрые АЦП необходимы в цифровых осциллографах. (параллельные и конвеерные)

Современные весы используют АЦП с разрядностью до 24 бит, преобразующие сигнал непосредственно от тензометрического датчика. (сигма-дельта АЦП)

АЦП входят в состав радиомодемов и других устройств радиопередачи данных, где используются совместно с процессором ЦОС в качестве демодулятора.

Сверхбыстрые АЦП используются в антенных системах базовых станций (в так называемых SMART-антеннах) и в антенных решётках РЛС.

3. Чтобы найти необходимое количество разрядов для получения требуемой разрешающей способности, при заданном напряжении полной шкалы, необходимо произвести следующие действия: напряжение полной шкалы делится на 2 до тех пор, пока не будет получена нужная разрешающая способность. При этом следует подсчитать количество делений на 2, что и будет являться НЕОБХОДИМЫМ количеством разрядов (N).

Способ №1:

N=5/2=2,5/2=1,25/2=0,625В

Способ №2:

5/2N=0,625 решим уравнение и найдём N.

5/0,625=2N //прологорифмируем Л.и П. части

ln(8)=N*ln2

N=3.

№_____14______