Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика 2003.doc
Скачиваний:
14
Добавлен:
20.09.2019
Размер:
1.59 Mб
Скачать

21. Теорема умножения вероятностей: для двух произвольных событий; для двух независимых событий; для нескольких событий, независимых в совокупности.

Для двух произвольных событий

 Вероятность произведения двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, в предположении, что первое имеет место, т.е.

P(AB) = P(A)P(B|A) = P(B)P(A|B).

Следствие. Для любых двух событий А и В справедливо равенство

P(A)P(B|A) = P(B)P(A|B).

Теорема умножения произвольных событий допускает обобщение на случай нескольких событий.

Для двух независимых событий

Вероятность совместного появления двух независимых событий А и В равна произведению вероятностей этих событий:

P(AB) = P(A)P(B).

Для нескольких событий, независимых в совокупности.

Вероятность произведения конечного числа независимых в совокупности событий равна произведению вероятностей этих событий:

P(A1 x A2 x...x An) = P(A1) x P(A2) x...x P(An).

Формула полной вероятности. Вероятность события В, появляющегося в результате реализации одной и только одной гипотезы Ai(i = 1, 2,..., n) из некоторой группы несовместных гипотез A1, A2,..., An равна сумме парных произведений вероятностей всех гипотез, образующих полную группу, на соответствующие условные вероятности события В, т.е.

,

причем  .

В теоретико-вероятностных приложениях часто требуется найти вероятность события Ai, если известно, что В произошло. Общая схема решения подобных практических задач сводится к применению формулы Байеса:

.

Принцип использования формулы Байеса можно пояснить следующим образом.

Пусть событие В может быть реализовано в различных условиях, относительно характера которых можно сделать n гипотез: A1, A2,...,An.

По тем или иным причинам вероятности P(Ai) этих гипотез известны до испытания (априорные вероятности). Известно также, что гипотеза Ai сообщает событию В вероятность P(B|Ai). Произведен опыт, в котором событие В наступило. Это должно вызвать переоценку вероятностей гипотез Ai. Переоценка указанных вероятностей производится по формуле Байеса. Переоцененные вероятности гипотез называются апостериорными вероятностями.

Сама по себе формула Байеса теоретически бесспорна, но во многих случаях ее применения априорные вероятности P(Ai) неизвестны. Некоторые исследователи в таких случаях считают возможным предполагать равные вероятности всех гипотез Ai. Однако в общем случае такой подход неверен].

Другим выходом из проблемной ситуации, связанной с незнанием априорных вероятностей, явился метод последовательного применения формулы Байеса, когда апостериорные вероятности многократно пересчитываются и на каждом последующем шаге используются как априорные. При этом неизвестные априорные гипотезы также принимаются равновероятными, но многократный пересчет значительно снижает влияние данного предположения на конечные.

22. Формула полной вероятности.

Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A, то это значит, что произошло одно из попарно несовместных событий H1AH2A, ..., HnA. Следовательно,

   Применяя аксиому сложения вероятностей, имеем

   Но   (i=1, 2, ..., n), поэтому

   Эта формула называется формулой полной вероятности. События H1H2, ..., Hn часто называют «гипотезами».