Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пояснительная записка.docx
Скачиваний:
24
Добавлен:
19.09.2019
Размер:
1.74 Mб
Скачать

2.2 Конвективные облака

2.2.1 Уровень свободной конвекции

Кучевообразные, или конвективные, облака имеют вид изолированных облачных масс[7]. Они сильно развиты по вертикали и имеют небольшую горизонтальную протяженность в отличии от слоистообразных. Между этими облаками наблюдаются значительные просветы голубого неба[8]. К образованию данного вида облаков в большей степени приводят такие процессы как термическая конвекция и турбулентный обмен[1].

Конвекция возникает в результате перегрева отдельных масс воздуха при неустойчивой в нижних слоях стратификации[7]. К наиболее благоприятным условиям для возникновения конвективных движений относят теплую половину года – день. Под влиянием притока прямой солнечной радиации вблизи земной поверхности возникает неустойчивая стратификация[1]. В этом случае перегретый объем воздуха начинает подниматься от исходного уровня, его температура падает с высотой медленнее, чем окружающего воздуха, и он оказывается теплее и легче относительно окружающей среды на уровнях выше исходного[9].

Сначала подъем такой массы ненасыщенного воздуха происходит практически по сухой адиабате . Данный процесс проиллюстрирован на рис. 2.2. На уровне конденсации воздух достигает состояния насыщения (f=100%). При наличии активных и достаточно крупных ядер конденсации состояние насыщения достигается несколько ниже уровня конденсации[1].

Выше уровня конденсации воздух поднимается по влажной адиабате. Благодаря понижению температуры происходит конденсация водяного пара и образование облачности. При адиабатическом подъеме воздушной частицы ее температура в некотором слое воздуха (толщиной в несколько десятков метров), располагающемся несколько выше основания развивающегося конвективного облака, может с высотой не только не понижаться, но и возрастать[3]. Качественно е объяснение явления таково: выше уровня конденсации относительная влажность частицы продолжает возрастать и на некоторой высоте достигает максимальной величины (порядка 101-102 %0; в слое между и конденсация водяного пара на каплях происходит очень медленно (вследствие возрастания упругости насыщения на поверхности капли), а скорость понижения температуры частицы в слое от до примерно такая же, как и до уровня конденсации. Но как только относительная влажность достигла максимума, начинается очень быстрая конденсация водяного пара на каплях, сопровождающаяся выделением скрытой теплоты и нагреванием частицы; благодаря этому в некотором слое от до температура частицы не изменяется с высотой и даже может возрастать, выше температура частицы вновь начинает падать – кривая изменения температуры приближается к влажной адиабате[1].

Рис. 2.2 – Схема конвективного облака.

– уровень конденсации, – уровень нулевой изотермы, – уровень конвекции; 1 – кривая стратификации, 2 – кривая состояния.

Исходя из полученных данных рассчитано изменение температуры в поднимающейся частице (скорость подъема принята равной 1 м/сек). При этом оказалось, что - =27 м; - =13 м, а толщина всего слоя, в котором наблюдается явление, составляет около 60 м[1].

В итоге представляются интересными следующие уровни, связанные с развитием конвективного облака:

1. уровень конденсации , практически совпадающий с нижней границей облака;

2. уровень нулевой изотермы отделяющий верхнюю (переохлажденную) часть облака от непереохлажденной;

3. уровень свободной конвекции , практически совпадающий с верхней границей облака[1].

Уровень свободной конвекции - это уровень, до которого распространяются восходящие вертикальные движения (струи), порождаемые энергией неустойчивости[5]. Он располагается несколько выше уровня, где температура поднимающейся частицы (струи) выравнивается с температурой окружающего воздуха. Объясняется это тем, что до уровня выравнивания поднимающаяся частица на любой высоте имеет более высокую температуру, чем окружающий воздух, и движется вверх ускоренно (с нарастающей скоростью). Вблизи уровня выравнивания скорость частицы (струи) близка к максимальной. Выше этого уровня температура частицы становится ниже температуры среды, вертикальная скорость начинает уменьшаться, но частица по инерции продолжает подниматься вверх до уровня свободной конвекции, где скорость ее обращается в нуль[1].

О механизме возникновения и характере конвективных движений в атмосфере за последнее время высказано несколько точек зрения. Наиболее распространенная из них учитывает ярусный характер развития конвекции[8]. На это впервые обратил внимание А.А.Скворцов. Первоначально в ранние утренние часы (летом) происходит перенос водяного пара и тепла в пределах примерно приземного слоя атмосферы (до высоты 50-100 м). Этот перенос осуществляется через мелкомасштабный турбулентный обмен. Размеры турбулентных частиц (вихрей) с увеличением высоты возрастают. На верхней границе приземного слоя образуются вихри (струи) более крупного масштаба, которые переносят тепло и влагу примерно да уровня конденсации. И лишь вблизи последнего формируются частицы (струи), сравнимые по величине с размерами облака[4]. Вертикальные движения внутри облака имеют характер отдельных струй – восходящие течения чередуются в горизонтальном направлении с нисходящими. Величина вертикальных токов в конвективных облаках изменяется в широких пределах: от долей метров в секунду до 30-40 [1].

В конвективных облаках восходящее движение преобладает над нисходящим[1].

2.2.2 Конвективные вертикальные движения: термическая конвекция и турбулентный обмен

Термическая конвекция. К условиям необходимым для образования термической конвекции можно отнести неустойчивую стратификацию атмосферы и малую начальную плотность некоторого изолированного объема воздуха по сравнению с окружающей средой[5].

Термическая конвекция осуществляется в форме всплывающих изолированных объемов воздуха – термиков[6]. Термики можно разделить на две группы. В зависимости от термических условий существуют изолированные термики примерно сферической формы с внутренней циркуляцией в виде вихревых колец – пузырь. Ко второй группе в зависимости от динамических условий в атмосфере можно отнести вертикальные или наклонные струи или столбцы. Эти струи или столбцы иногда вращаются, вертикальный размер которых в 5-10 раз превышающий горизонтальный. Так же существует термик в виде объединения двух форм – «султан»[5].

Исследования пузырей показали, что термики имеют строение, представленное на рисунке 2.3[10].

Рис. 2.3 – Строение термика, где а – схема пузыря, б – линии тока в том же поднимающемся пузыре

В головной части термика (ядро М), имеющей форму полусферы, сконцентрирован перегретый воздух, обладающий подъемной силой. Тыловая часть термика (турбулентный след термика – кильватерная зона (КЗ)) представляет собой шлейф относительно холодного воздуха. Образуется шлейф вследствие сильного турбулентного перемешивания в головной части термика и последующего частичного смывания воздуха из турбулизованного пограничного слоя (зона эрозии (ЗЭ)) в шлейф, при этом часть воздуха вовлекается внутрь термика [7].

Перемешивание с окружающей средой уменьшает подъемную силу термика, и через некоторое время его ядро полностью разрушается. Однако существует и обратный процесс: из-за локального понижения давления в тыловой части происходит втягивание мелких термиков внутрь всплывающего более крупного, называемого «материнским». В результате плавучесть «материнского» термика увеличивается и наблюдается рост его геометрических размеров. Дальнейшие лабораторные исследования показали, что в головной части термика происходит квазистационарная вихревая циркуляция, которая играет стабилизирующую роль, препятствуя полному перемешиванию термика с окружающим воздухом. Термики, достигшие уровня конденсации дают начало конвективным облакам[5].

Предположение о том, что первичные элементы облачной конвекции представляют собой изолированные объемы воздуха, высказано П. А. Молчановым в 1931 году, который считал, что отдельные крупные турбулентные вихри (термики), достигая уровня конденсации, дают начало конвективным облакам. Таким образом, термическая (свободная) конвекция начинается не от самой поверхности земли, а в слое 10-100 метров над нею. Наибольшее значение для возникновения конвективного облака имеют крупные термики, так как они могут достигать уровня конденсации и давать тем самым начало кучевых облаков. Физическое объяснение происхождения термиков было дано Н. И. Касаткиным в 1915 году, считавшим, что термики возникают вследствие сильного нагревания части поверхности или внутри самой воздушной массы вследствие ее неустойчивого состояния – «спонтанный» термик, образованный над нагретой поверхностью. В результате подъема термика может объединяться друг с другом и тем самым укрупняться. Термики имеют разные высоты, вплоть до нескольких километров. Иногда присутствие дыма, пыли, капель делают термик видимым[9].

Продолжительность жизни термиков различна: от нескольких секунд до десятков минут. Термик на теплее окружающего воздуха, скорость вертикального подъема достигает нескольких метров в секунду[5].

Для построения количественной теории образования конвективных облаков и осадков большое значение имеют экспериментальные исследования конвективных движений. Они включают измерение скорости восходящего потока и ее изменения со временем и с высотой над основанием облака, геометрических размеров восходящего потока (формы потока, его вертикальной и горизонтальной протяженности), разности температур между воздухом и окружающей средой и т. д.[7].

Конвективное облако состоит из отдельных потоков, которые имеют форму струи или пузыря. Горизонтальная протяженность областей, занятых такими вертикальным и потоками, может составлять сотни метров и, даже нескольких километров, а сами скорости могут быть равными 15-20 и больше[5]. Средние и максимальные размеры восходящих струй в облаках и значения скорости в восходящем потоке, с высотой над основанием облака были получены Н. И. Вульфсоном с помощью чувствительных малоинерционных термометров. Результаты указаны в таблице 2.2. Из этих данных следует, что в развивающемся конвективном облаке преобладают восходящие потоки, средний размер которых равен примерно 100 метров, а максимальный достигает 700 метров[8].

Таблица 2.2

Средние и максимальные размеры восходящих струй в облаках и значения скорости в восходящем потоке

Высота полета, м

Размер струй, м

Перегрев струй,

Средний

максимальный

средний

максимальный

1200

95

515

0,34

0,90

1600

111

460

0,49

1,65

2000

121

370

0,55

1,50

2500

117

665

0,54

2,15

3000

123

345

0,74

2,55

Средние размеры конвективных потоков в облаках ( ) линейно растут с высотой: , где Z – высота в метрах, отсчитываемая от основания облака. Их относительный объем равен 0,70.

Значения высоты над основанием облака и скорость его потока показана в таблице 2.3.

Таблица 2.3

Значения высоты над основанием облака и скорость потока

Высота над основанием облака, м

200

700

1200

1700

2200

2700

Скорость, м/с

1

3

4

5

6

7

Существуют также данные о подъеме планера в мощнокучевом облаке, приведенные в таблице 2.4.

Таблица 2.4

Данные о высоте полета и средней скорости подъема

Высота полета, м

1040

1340

1700

2300

3100

4000

Средняя скорость подъема, м/с

2,0

2,5

3,0

5,0

6,7

7,5

(Максимальная скорость подъема планера, рассчитанная по показаниям барографа, на отрезке 30 см составляла 10,5 м/с, а скорость восходящего потока равнялась примерно 12 м/с)[5].

В 1948 году Н. С. Шишкин, исследуя вертикальные движения в конвективных облаках, предложил и применил радиолокационный метод наблюдений за движением отражателей, прикрепленных к уравновешенным шарам или шарам, опускающимся на двух парашютах[10].

Измерения вертикальных скоростей в развивающихся конвективных облаках показали, что в 33 случаях из 50 скорость превышала 5 м/с и в 14 случаях наблюдалась скорость больше 8 м/с, и в двух она превышала 10 м/с. В большинстве случаев имело место нарастание скорости восходящих потоков с высотой до некоторого значения, после чего скорость убывала. Уровень максимальных скоростей располагался в средней или предвершинной части облака, а средняя величина максимальной скорости восходящего потока составляла 6 метров в секунду. Измерения вертикальных скоростей в конвективных облаках показали, что во всех наблюдавшихся случаях максимальная скорость превышала 10 метров в секунду, а в двух достигала 20 – 22 м/с[5].

В конвективных облаках с восходящими потоками зарегистрированы и нисходящие. Наибольшая скорость нисходящего потока оказалась равной 14 м/с. Изучение распределения осредненных значений скорости восходящего потока по высоте в конвективных облаках показало, что максимальная средняя скорость составляет примерно 9 метров в секунду. Анализ данных выявил тот факт, что в развивающихся конвективных облаках скорость восходящего потока может иметь несколько экстремумов по высоте, при этом возможно уменьшение скорости почти до нуля[5].

В 1948 году учеными США было проведено детальное изучение вертикальных движений в грозовых облаках тропической зоны. На основании полученных данных о характере восходящих потоков Г. Байерс и Г. Брейам выделили в жизни кучево-дождевого облака три стадии: стадию роста, стадию зрелости, стадию диссипации. Согласно их данным горизонтальный размер областей, занятых восходящими потоками, достигал 11 километров, чаще всего повторялись размеры 1,5 – 1,8 км на высоте 3,3 км и 0,9 – 1,2 км на высоте 6,3 км. Максимальная наблюдавшаяся скорость восходящих потоков составляла 26 м/с. Нисходящие потоки имели меньшие горизонтальные размеры, чаще всего 1 -2 км, и скорости до 24 м/с. Аналогичные данные были получены сотрудниками Главной геофизической обсерватории им. А. И. Воейкова при полетах над территорией СССР в 1960 -1970-ых годах[5].

Важным источником информации о вертикальных движениях в облаках являются наблюдения за формой и движением их верхней границы. Так, данные о росте вершин облаков позволяют оценить скорость восходящего потока внутри облака. Скорость подъема вершин облаков по данным Н. С. Шишкина, А. Ф. Дюбюка и других исследователей колеблется для разных районов нашей страны в пределах от 0,6 до 1,3 метров в секунду. Для грозовых – от 0,6 до 2,6 м/с, средняя скорость снижения вершин распадающихся облаков составляет 1,3 м/с. Максимальная скорость роста вершин в отдельных случаях достигала 15 – 20 м/с [11].

Исследование характера роста вершин облаков показало, что развитие конвективного облака происходит в виде некоторой последовательности импульсов, при этом наблюдается чередование периодов бурного роста мощности облака с периодами, когда оно не развивается по высоте или даже оседает. Одной из причин такого характера развития облаков является наличие устойчивых слоев внутри слоя активной конвекции, вызывающих торможение восходящего потока[1].

Измерения куполов вершин конвективных облаков дают ценную информацию о размерах термиков. Обработка таких данных показала, что радиус термиков изменяется в пределах от 200 до 2000 метров[2].

Турбулентный обмен. Наряду с вертикальными движениями в конвективных облаках наблюдаются интенсивные турбулентные движения. Горизонтальная протяженность турбулентных потоков в кучевых облаках – от десятков сантиметров до сотни метров. Считается, что эти потоки обусловлены термической и динамической турбулентностью. Особенно сильно турбулизован воздух около основания и вершин кучевых облаков. Структура турбулентных зон в этих облаках еще изучена очень мало. О горизонтальной протяженности турбулентных зон в конвективных облаках данных почти нет[5].

Еще в 1915 году Н. И. Касаткиным было высказано предположение о том, что в процессе роста конвективных облаков окружающий воздух втекает внутрь основного восходящего потока[4]. Гипотеза о вовлечении окружающего воздуха высказывалась и позднее, однако систематическая ее проверка началась примерно с 1947 года, когда были получены первые экспериментальные данные, подтвердившие ее. В последующем наличии вовлечения подтвердили данные лабораторных экспериментов по моделированию движения термиков. Наиболее поздние лабораторные эксперименты показали, что 60% захвата окружающего воздуха происходит в головной части термика и около 40%– с боков. Опыты Г. Байерса и его коллег с уравновешенными шарами, запускаемыми вблизи развивающихся кучевых и грозовых облаков, тоже подтвердили наличие вовлечения (шары втягивались внутрь облака). По данным самолетных исследований скорость втекания оказалась равной 1 – 2 м/с, а по более поздним данным 0,2 – 0,5 м/с, причем в наветренной части облака наблюдалось преимущественное втекание воздуха в него, а в подветренной – вытекание. В пользу существования вовлечения говорит и тот факт, что измеренные значения водности облака не равны адиабатической водности и составляют в среднем половину ее значения. Измерения влажности и водности позволили обнаружить существование внутри облака зон с пониженными значениями. Что является следствием проникновения объемов более сухого окружающего воздуха[5].

В настоящее время можно указать на два механизма вовлечения: турбулентное перемешивание и динамическое вовлечение. Определенную роль при этом играет процесс фазового перехода.

Турбулентное перемешивание в основном происходит вдоль боковой поверхности облака. Неустойчивая стратификация, горизонтальный сдвиг скорости ветра и локальное охлаждение воздуха на периферии облака вследствие испарения капель создают благоприятные условия для развития турбулентности как внутри него, так и в его окрестности, что, в свою очередь, усиливает процесс взаимодействия облака с окружением[5]. На начальной стадии развитии облака обмен осуществляется периферийными турбулентными вихрями, затем зона обмена расширяется и охватывает весь конвективный поток. Когда интенсивность турбулентности окружающей атмосферы и конвективного потока становится одного порядка, то обмен начинает осуществляться в двух направлениях. В дальнейшем наблюдается усиление оттока воздуха из потока, что приводит к его разрушению, причем, крупные элементы не разрушаются дольше, и облака с большим начальным радиусом достигают больших высот[7].

Динамическое вовлечение имеет другую физическую природу. Оно обусловлено компенсационным горизонтальным втеканием воздуха в ускоренно всплывающую струю, так как возрастание скорости с высотой в струе приводит к понижению давления внутри нее и к возникновению горизонтального градиента давления. Под его влиянием, и в силу условия неразрывности возникает компенсационное горизонтальное втекание[5].

Таким образом, приведенное краткое описание движений воздуха в конвективной облаке и его окружении говорит о том, что оно представляет собой сложную гидродинамическую совокупность восходящих и нисходящих потоков, соотношение между которыми и степень их развития различны на разных стадиях жизни облака[5].

Температура воздуха внутри конвективных облаков не равна температуре окружающей среды. Растущее облако в нижних двух третях своей толщи в среднем теплее, а верхней части холоднее окружающего воздуха. Температура у основания облака выше окружения на несколько десятков долей градуса, в центральной части мощнокучевого облака перегрев может достигать 2 – 3 , а внутри вершины мощнокучевого облака температура может быть ниже на 2 – 3 , чем в окружающей среде[5]. На начальной стадии развития конвективного облака восходящие потоки в нем теплее окружающего воздуха на 1 - 4 , причем это превышение увеличивается с высотой над основанием облака. Однако не ясно, до какого уровня этот рост продолжается. В конце зрелой стадии облака восходящие потоки иногда становятся на 0,3 – 1,3 холоднее окружающего воздуха. Нисходящие же потоки обычно холоднее окружающего воздуха, причем на стадии зрелости они могут быть холоднее на 4 . В стадии диссипации разность температур уменьшается[5].

Размеры и повторяемость облачных струй и термиков. По экспериментальным исследованиям распределения струй и термиков по размерам, а также вертикальной скорости движения и их температуры, принимается то обстоятельство, что самолет пересекает конвективные потоки на различных и притом неизвестных расстояниях от центра струи или термика. Понятно, что измеренные с помощью самолета размеры конвективных потоков отличаются от действительных их размеров. Для определения этих размеров привлекается теория статистической интерпретации результатов измерений. Средние значения диаметра ( ) струй, большой оси a горизонтальных течений термиков и замеренных случайных сечений l конвективных потоков в слое от земной поверхности до высоты около 3000 м при отсутствии облаков таковы: =60 м; =50 м и = 90 м. Средняя концентрация потоков составляет около 40 струй на 1 или 750 термиков в 1 . Размеры струй и термиков во всем исследованном слое практически постоянны с высотой (исключения составляет слой высотой около 300 м, где и возрастают с высотой).

П. Саундерс исследовал скорость роста термиков в облаках с помощью киносъемки (в Швеции). Анализ материалов позволил сделать два важных вывода: на фиксированной высоте наблюдается четко выраженный верхний предел диаметра термиков, выступающих из развивающегося конвективного облака и этот максимальный (для данной высоты) диаметр растет линейно с высотой.