Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пояснительная записка.docx
Скачиваний:
24
Добавлен:
19.09.2019
Размер:
1.74 Mб
Скачать

4. Теоретические основы численной модели конвективного облака

    1. Описание численной модели

4.1.1 Обоснование выбора модели

Возможности натурных исследований конвективных облаков сильно ограничены. Основными факторами, затрудняющими натурные исследования, являются существенная нестационарность облачных процессов, затрудняющая измерения, а также, опасные явления, угрожающие здоровью и жизни экспериментаторов либо сохранности аппаратуры. В связи с этим важным инструментом исследования физики облачных процессов, происходящих в конвективных облаках, являются численные модели.

Эти модели могут быть классифицированы по целому ряду признаков. По наличию учета зависимости характеристик облака от времени модели можно подразделить на стационарные и нестационарные ; по размерности пространства – на нуль-мерные, одномерные, полуторамерные, двумерные, трехмерные [14]. Модели различаются по способу описания микрофизических процессов в облаке. Помимо этого, между разными моделями существуют различия по наличию, полноте и способу учета взаимодействия облака с окружающей средой, фазовых переходов, электрических процессов, химических реакций, распространения газообразных и аэрозольных примесей, радиационных процессов и др.

Выбор того или иного типа модели осуществляется исходя из цели и предмета исследования, а также, имеющихся в распоряжении вычислительных средств.

Данные натурных исследований конвективных облаков убедительно показывают, что такие облака представляют собой сугубо нестационарное явление. Следовательно, стационарные модели применительно к ним могут применяться, в основном, для упрощенного анализа некоторых характеристик конвективных облаков, слабо меняющихся в течение некоторого промежутка времени. Между тем, известно, что характерное время жизни конвективного облака, как правило, составляет порядка 102 минут; в течение этого периода скорость воздушных движений в облаке может изменяться на 1 – 2 порядка; водность, удельная плотность электрического заряда и напряженность электрического поля – на 3 – 6 порядков [24]. Таким образом, моделирование эволюции таких облаков, в основном, предполагает применение нестационарной модели.

Реализация адекватных моделей большой размерности затруднена в связи с большой длительностью проведения расчетов. По этой причине целесообразно использовать модель малой размерности (полуторамерную). Это оправдано, поскольку движение воздуха, капель, кристаллов и аэрозолей во внутримассовых конвективных облаках, в основном, происходит в вертикальном направлении.

Введение детальной микрофизики дополнительно увеличивает время, затрачиваемое на выполнение численных расчетов [15]. Вместе с этим показано, что решение системы уравнений для интегральных характеристик облачных элементов дает результаты, находящиеся в удовлетворительном соответствии с данными натурных измерений [11]. Следовательно, на данном этапе исследований можно ограничиться параметризованным описанием микрофизических характеристик облака.

В модели необходим учет наличия кристаллической фазы в облаке, играющей существенную роль в процессе осадкообразования.

В модель необходимо ввести аэрозольный блок.

Для наиболее корректного описания динамики облака, также, необходим учет взаимодействия конвективного облака с окружающей средой, то есть, модель должна быть неадиабатической.

На основании вышесказанного был произведен выбор конкретного типа модели конвективного облака – полуторамерной, нестационарной, с параметризованным описанием микрофизических процессов, с учетом наличия грубодисперсных аэрозолей.