Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
зачет физика.docx
Скачиваний:
16
Добавлен:
18.09.2019
Размер:
2.42 Mб
Скачать

49.Оптический микроскоп: устройство, увеличение, разрешение. Формула Аббе. Ультрафиолетовый микроскоп: устройства, принцип действия, преимущества. Иммерсионные системы.

Микроскоп — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом.

Устройство:

Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик. Увеличение оптического микроскопа без дополнительных линз между объективом и окуляром равно произведению их увеличений. В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.

Увеличение – отношение размеров мнимого изображения к размерам рассматриваемого через микроскоп предмета : K=

Увеличение объектива:

= отношение размеров промежуточного изображения к размерам предмета

Увеличение окуляра:

= отношение размеров мнимого изображения к промежуточному изображению, которое рассматривается через окуляр.

Предел разрешения – наименьшее расстояние между двумя точками, когда эти точки воспринимаются отдельно.

Аберрация (аберрации оптических систем) — погрешности изображения в оптической системе, вызываемые отклонением луча света от направления его в идеальной оптической системе.

Ультрамикроскоп — оптический прибор для обнаружения частиц столь малых размеров (до 2 нм), что их нельзя наблюдать в обычные микроскопы.

Устройство:

Повышение разрешающей способности достигается применением для освещения шлифа невидимого для глаза ультрафиолетового излучения.

У целого ряда элементов и ультрафиолетовой части спектра расположены основные сильные полосы поглощения и имеют начало области сплошного поглощения с резкими границами со стороны длинных волн. Это дает возможность выявлять на микрофотографиях, получаемых в ультрафиолетовых лучах соответственно выбранной длины волны, многие новые детали структуры, обнаруживаемые с помощью обычного микроскопа лишь в результате сложной обработки, многоступенчатого травления или специальной окраски.

Недостатками метода ультрафиолетовой микроскопии являются необходимость применения дорогих кварцевых линз вследствие интенсивного поглощения ультрафиолетового излучения стеклом и относительная сложность техники цветного фотографирования.

Иммерсионная система — оптическая система, в которой пространство между первой линзой и предметом заполнено жидкостью. Применяемая таким образом жидкость называется иммерсионной.

50. Специальные приемы микроскопии: иммерсионный метод, фазово-контрастный метод, метод темного поля, ультрамикроскопия. Цель использования и условия применимости, основы метода (пояснительный рисунок), преимущества и недостатки метода.

Специальные приемы микроскопии направлены на решение в основном двух задач: уменьшение предела разрешения микроскопа и возможности наблюдения прозрачных, малоконтрастных объектов, что особенно важно в биологии.

Приемы:

1.Имерсионный

Направлен на уменьшение предела разрешения микроскопа Z=

Предел разрешения Z уменьшается за счет двух факторов: увеличенного апертурного угла и большего показателя преломления среды n между покровным стеклом и объективом. Кроме того, несколько увеличивается и яркость изображения, т.к. лучи не отражаются от границы раздела сред, а идут по практически однородной среде.

2.Фазово-контрастный метод

Используется для наблюдения малоконтрастных объектов.

3.Метод темного поля.

Наблюдение слабоконтрастных объектов проводится. В методе темного поля используется специальный конденсор темного поля К.

4.Ультрамикроскопия.

Можно наблюдать предметы, размеры которых меньше предела разрешения микроскопии 2-3нм. Разновидность метода темного поля. Используется для исследования дисперсных систем, независимо от агрегатного состояния фаз. В частности, для оценки чистоты воздуха в санитарной гигиене.

51. Интерференция света. Условия интерференции света. Понятия о разности хода волн, оптической разности хода волн, световом векторе. Когерентные источники света. Интерференция в тонких пластинах и пленках. Характер инетрференционной картины при падении монохроматического и белого света на пластину переменной толщины. Устройство и принципы действия интерференционного микроскопа.

Интерференция света – явление сложения в пространстве когерентных световых волн, при котором в разных его точках возникает усиление или ослабление амплитуды результирующей волны.

Условия интерференции света:

Причина состоит в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства ( когерентные). Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной (исключение составляют квантовые источники света – лазеры, созданные в 1960 г.). Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.

Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки

Или

где d — толщина пленки; n — показатель преломления пленки; i1 — угол падения; i2 — угол преломления света в пленке.

СВЕТОВОЙ ВЕКТОР - вектор плотности светового потока, определяет величину и направление переноса световой энергии.

Когерентные источники света – это источники, которые имеют постоянную во времени разность фаз, согласованное протекание нескольких колебательных или волновых процессов, степень которых различна.

Интерференция света в тонких плёнках

Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол отражения, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной d, отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, от чего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при , где — длина волны. Если нм, то толщина плёнки равняется 550:4=137,5 нм.

52. Интерференционная картина от клина переменной толщины (схема наблюдения колец Ньютона). Формулы для расчета радиусов светлых и темных колец в отражённом монохроматическом и белом свете. Практическое использование интерференции в тонких пластинах и пленках. Просветление оптики.

Радиус светлых колец Ньютона в отраженном свете

где k=1, 2, 3 …… — номер кольца; R — радиус кривизны.

Радиус темных колец Ньютона в отраженном свете

, где k=1, 2, 3 …….

Прихотливый вид интерференционных картин в тонких пленках объясняется, как сказано, случайными неравномерностями в толщине пленки. В пленке, имеющей вид клина, области одинаковой толщины вытянуты вдоль ребра клина и в соответствии с этим так же расположены темные и светлые (цветные) полосы интерференции.

НЬЮТОНА КОЛЬЦА - интерференц. полосы равной толщины в форме колец, расположенных концентрически вокруг точки касания двух сферич. поверхностей либо плоскости и сферы.

53.Интерферометры (определение), их применение в медицине и фармации. Устройство и принцип действия интерферометров Жамена и Майкельсона. Микроинтерферометр В.П. Линника для контроля за чистотой обработки металлических поверхностей высокого класса точности (схема установки, преимущества). Газовый интерферометр (схема установки, преимущества).

Интерферометр — измерительный прибор, принцип действия которого основан на явлении интерференции.

Применяется с санитарно-гигеническими целями для определения содержания вредных газов. Используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Интерферометр Майкельсона — двухлучевой интерферометр, изобретённый Альбертом Майкельсоном. Данный прибор позволил впервые[1] измерить длину волны света.

Конструктивно состоит из светоделительного зеркала, разделяющего входящий луч на два, которые в свою очередь, отражаются зеркалом обратно. На полупрозрачном зеркале разделённые лучи вновь направляются в одну сторону, чтобы, смешавшись на экране, образовать интерференционную картину. Анализируя её и изменяя длину одного плеча на известную величину, можно по изменению вида интерференционных полос измерить длину волны, либо, наоборот, если длина волны известна, можно определить неизвестное изменение длин плеч. Радиус когерентности изучаемого источника света или другого излучения определяет максимальную разность между плечами интерферометра.

54. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция на щели в параллельных лучах. Дифракционная решетка. Дифракционные спектры. Применение дифракционной решетки. Дифракция рентгеновских лучей. Основы рентгеноструктурного анализа. Формула Вульфа-Брегга. Голография. Принцип получения и восстановления голограммы. Применение голографии в медицине.

Дифракция – огибание волнами препятствий, встречающихся на их пути; любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.

Принцип Гюйгенса-Френеля: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Согласно принципу: результирующее колебание в некоторой точке пространства является суперпозицией элементарных вторичных волн, излучаемых каждым элементом некоторой волновой поверхности.

Дифракция плоских световых волн – дифракция Фраунго-фера, и сферических световых волн – дифракцию Френеля.

Дифракционная решетка – оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга одинаковых щелей.

Формула Вульфа-Брэггов:

2dsinθ=mλ, m=1, 2, 3..

Наблюдая дифракцию рентгеновского излучения известной длины волны на кристаллической структуре неизвестного строения и измеряя θ и m, можно найти межплоскостное расстояние d, т.е. определить структуру вещества. Этот метод лежит в основе рентгеноструктурного анализа.

Голография – особый способ записи и последующего восстановления волнового поля, основанный на регистрации интерференционной картины.

Используется в медицине для рассматривания внутренних органов человека с диагностической целью.

55. Законы преломления, отражения света. Полное внутреннее отражение света от границы раздела двух сред. Рефрактометрия. Волоконные световоды: устройство, принцип действия, использование в медицине. Применение рефрактометров в фармации.

Закон отражения:

1.Лучи, падающий, отраженный и перпендикуляр в точку падения лежат в одной плоскости. 2. Угол падения равен углу отражения.

Закон преломления:

1.Лучи падающий, преломленный перпендикуляр в точку падения лежат в одной плоскости. 2. Отношение синуса угла падения света к синусу угла преломления есть величина постоянная для данных двух сред, равная относительному показателю преломления второй среды относителньо первой.

Если свет падает под углом альфа предельного, то он полностью отражается от границы раздела сред и не выходит в оптически менее плотную среду-явление полного внутреннего отражения.

Если угол преломления бета достигает 90, то угол падения становится равным альфа пред. Этот угол можно найти по формуле: = =sin , где -предельный угол отражения.

Явление полного внутреннего отражения используется в гибких светопроводах, состоящих из множества отдельных световолокон, которые применяются в приборах с волоконной оптикой. Например, в фиброгастроскопах. В светопроводе гибкое прозрачное световолокно окружено прозрачным веществом с меньшим показателем преломления. При > свет будет передаваться по гибкому светопроводу практически без потерь, претерпевая полное внутреннее отражение.

Рефрактометр – прибор для определения концентрации вещества на основе измерения его показателя преломления.

Рефрактометр широко используется для установления подлинности жидких лекарственных веществ, в санитарной гигиене для выяснения концентрации жидких бесцветных веществ в воде.

56.Тепловое излучение. Механизм теплового излучения в газах, твердых телках, жидкостях. Поток энергии электромагнитного излучения. Лучеиспускательная способность тела. Спектральная плотность энергетической светимости. Спектр излучения тела. Лучеотражательная способность тела. Лучепоглощательная способность. Лучепропускательная способность. Уравнение баланса энергии.

Тепловое излучение – электромагнитное излучение нагретых тел, т.е. излучение, обусловленное возбуждением атомов и молекул в процессе их теплового движения.

В газах возбуждение атомов при тепловом движении происходит за счет соударений атомов и молекул между собой, за счет энергетических переходов атомов на вращательных степенях свободы. В твердых телах возбуждение ионов происходит за счет соударений ионов кристаллических решеток со свободными электронами, за счет энергетических переходов атомов и ионов в молекулах и кристаллических решетках на колебательных степенях свободы. В жидкостях имеют место эффекты возбуждения атомов и молекул, характерные как для газов, так и для твердых тел.

Поток энергии электромагнитного излучения – энергия излучения, падающая на поверхность, перпендикулярную направлению излучения, в единицу времени:

Ф=

Лучеиспускательная способность Е,т, является спектральной характеристикой теплового излучения тела. Она зависит от частоты v, абсолютной температуры Т тела, а также от его материала, формы и состояния поверхности. В системе СИ Е,т, измеряется в дж/м2.

Спектральная плотность энергетической светимости - величина, равная отношению энергетической светимости в бесконечно малом интеррвале длин волн, к шине этого интервала:

=

СИ-Вт/

Зависимость спектральной плотности энергетической светимости от длины волны называется спектром излучения.

57.Абсолютно белое тело. Абсолютное черное тело. Абсолютное серое тело. Терморегуляция организма. Закон теплового излучения Кирхгофа. Следствия закона Кирхгофа. Распределение энергии теплового излучения по спектру. Формула Планка для абсолютно черного тела.

Абсолютно белое тело – поверхность, диффузно отражающая всю падающую на нее лучистую энергию. В природе абсолютно белых, как и идеально зеркальных тел, не существует. К нему наиболее близки полированные металлы (R = 0,97)

Абсолютно чёрное тело — тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее.

Абсолютно серое тело — это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры.

Закон Кирхгофа: отношение спектральной плотности энергетической светимости r любого тела к монохроматическому коэффициенту поглощения зависит от длины волны излучения λ и абсолютной температуры Т, не зависит от природы излучающего тела и равно спектральной плотности энергетической светимости черного тела при той же температуре

Выражение для средней энергии колебания частотой ω дается выражением:

  • - постоянная Планка

  • - постоянная Больцмана.

Количество стоячих волн в трёхмерном пространстве равно:

58.Изотермы излучения абсолютно черного тела, их теоретическое обоснование. Закон Стефана-Больцмана, закон смещения Вина (формула, формулировка, физический смысл). Квантово-механический смысл законов теплового излучения. Применение инфракрасного излучения в медицине и фармации. Применение ультрафиолетового излучения в медицине и фармации.

Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его термодинамической температуры:

де j — мощность на единицу площади излучающей поверхности, а - постоянная Стефана — Больцмана.

Закон смещения Вина – произведение абсолютной температуры абсолютного черного тела на длину волны, при которой спектральной плотность энергетической светимости данного тела максимальна, равна постоянной величине , т.е. T=b1, где b1-постоянная Вина=2,9* мК. Закон справедлив и для серых тел.

Квантовая суть закона Стефана – Больцмана состоит в следующем. Если среду, в которой распространяется излучение, представить в виде куба, то энергия, заключенная в этой среде, при данной температуре =Nhν= h, где N – количество квантов, укладывающихся на ребре куба. Очевидно, квантов уложится тем больше, чем меньше длина их волны. Следовательно, ~ . Учитывая hν~kT, имеем .

Для лечебных целей используется коротковолновая часть инфракрасного излучения. Применяют пи воспалительных процессах. При облучении ускоряется метаболизм в тканях, раскрывается микроциркуляторное русло. Идет миграция лимфоцитов в очаг воспаления. В фармации – в спектроскопии. Исследованы классы органических соединений разной степени сложности.

В медицине используют кварцевые лампы с ультрафиолетовым излучением, бактерицидные лампы для дезинфекции воздуха в операционных, перевязочных и общих больничных палатах.

59.Устройство и принцип действия рентгеновской трубки. Жесткое рентгеновское излучение. Зависимость длины излучения от анодного напряжения рентгеновской трубки. Виды рентгеновского излучения: характеристическое и тормозное излучения (происхождение, спектр). Характеристические рентгеновские спектры, их применение для химического анализа.

Рентгеновское излучение – электромагнитные волны, занимающие спектральную область между ультрафиолетовым и гамма-излучением в пределах длин волн от м до м.

Рентгеновская трубка – двухэлектродный вакуумный прибор, в котором вылетающие из накаленного катода и ускоренные электрическим полем электроны попадают на металлический анод (антикатод). При торможении быстрых электронов под действием электростатического поля вещества анода излучаются электромагнитные волны – возникает тормозное рентгеновское излучение.

Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома.

Тормозное излучение - фотонное излучение с непрерывным энергетическим спектром, испускаемое при уменьшении кинетической энергии заряженных частиц. Воздействие на окружающую среду такое, как и гамма-излучения.

Характеристическое излучение - фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома. Воздействие на биологическую ткань аналогично гамма-излучению.

Спектр рентгеновского излучения представляет собой наложение тормозного и характеристического спектров. При этом линейчатый характеристический спектр по интегральной интенсивности излучения составляет (1-2)% от сплошного тормозного спектра.

60. Основные характеристики рентгеновского излучения: интенсивность (определение, формулы, единицы измерения), доза, проникающая способность. Взаимодействие рентгеновского излучения с веществом: когерентное рассеяние, фотоэффект, некогерентное рассеяние. Ядерный гамма-резонанс, его применение в изучении распределения заряда в ядрах.

ПОГЛОЩЕНИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В ВЕЩЕСТВЕ. При исследовании взаимодействия рентгеновских лучей с веществом (твердым, жидким или газообразным) регистрируется интенсивность прошедшего или дифрагированного излучения. Эта интенсивность интегральна и связана с различными процессами взаимодействия. Чтобы отделить друг от друга эти процессы, используют их зависимости от условий эксперимента и физических характеристик исследуемого объекта.

Эффект рассеяния рентгеновских лучей связан с тем, что силы переменного электромагнитного поля, создаваемого пучком рентгеновских лучей, приводят в колебательное движение электроны в исследуемом материале. Колеблющиеся электроны испускают рентгеновские лучи той же длины волны, что и первичные, при этом отношение мощности лучей, рассеянных 1 г вещества, к интенсивности падающего излучения приближенно составляет 0,2. Этот коэффициент несколько увеличивается для рентгеновских лучей с большой длиной волны (мягкое излучение) и уменьшается для лучей с малой длиной волны (жесткое излучение). При этом сильнее всего рассеиваются лучи в направлении падающего пучка рентгеновских лучей (и в обратном направлении) и слабее всего (в 2 раза) в направлении, перпендикулярном первичному.

Фотоэффект возникает, когда поглощение падающего рентгеновского излучения сопровождается выбросом электронов. После выброса внутреннего электрона происходит возврат к стационарному состоянию. Этот процесс может происходить либо без излучения с выбросом второго электрона (эффект Оже), либо сопровождаться характеристическим рентгеновским излучением атомов материала. По своей природе это явление аналогично флюоресценции. Рентгеновская флюоресценция может происходить только при воздействии характеристического рентгеновского излучения какого-либо элемента на преграду из более легкого элемента (с меньшим атомным номером).

Гамма-резонанс - испускание и поглощение квантов атомными ядрами в твердом теле, обусловленные ядерными переходами, не сопровождающимися изменением колебательной энергии тела.

Поглощённая доза излучения - какая энергия излучения поглощается в единице массы вещества.

61.

Закон ослабления рентгеновского и гамма-излучения при прохождении через вещество.

M-линейный коэффициент ослабления.

Коэффициент m называют линейным коэффициентом ослабления. Его величина зависит от атомного номера поглощающего вещества и длины волны рентгеновского излучения. Физический смысл m : линейный коэффициент ослабления характеризует относительное уменьшение интенсивности луча при прохождении слоя поглотителя единичной толщины.

Массовый коэффициент ослабления характеризует уменьшение интенсивности рентгеновских лучей в единице массы вещества, а произведение r dx представляет собой поверхностную плотность вещества.

Рентгеноскопия — метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране.

Рентгеногра́фия — исследование внутренней структуры объектов, которые проецируются при помощи рентгеновских лучей на специальную плёнку или бумагу. 

Флюорография — рентгенологическое исследование, заключающееся в фотографировании видимого изображения на флюоресцентном экране, которое образуется в результате прохождения рентгеновских лучей через тело (человека) и неравномерного поглощения органами и тканями организма.

Рентгеновская компьютерная томография — томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Томогра́фия — метод неразрушающего послойного исследования внутренней структуры объекта посредством его многократного просвечивания в различных пересекающихся направлениях.

Рентгенотерапия — один из методов лучевой терапии, при котором с лечебной целью используется рентгеновское излучение с энергией от 10 до 250 кв. С увеличением напряжения на рентгеновской трубке увеличивается энергия излучения и вместе с этим его проникающая способность в тканях возрастает от нескольких миллиметров до 8—10 см.

62.

Ионизирующие излучения, потоки фотонов или частиц, взаимодействие которых со средой приводит к ионизации ееатомов или молекул. Различают фотонное (электромагнитное) и корпускулярное ионизирующие излучения. К фотонному ионизирующему излучению относят вакуумное УФ и характеристическое рентгеновское излучения, а также излучения, возникающие при радиоактивном распаде и других ядерных реакциях (главным образом γ-излучение) и при торможении заряженных частиц в электрическом или магнитном поле - тормозное рентгеновское излучение,синхротронное излучение.

При прохождении ионизирующего излучения в среде возможны упругое рассеяние частиц, составляющих излучение, и неупругие процессы. При упругом рассеянии кинетическая энергия относительного движения частиц остается постоянной, но меняется направление их движения, то есть поток ионизирующего излучения рассеивается; при неупругих процессах кинетическая энергия <ионизирующие излучения расходуется на ионизацию и возбуждение частиц среды. Для потока электронов характерны упругое рассеяние на ядрах атомов среды и неупругие процессы - ионизация и возбуждение атомов и молекул при взаимодействии с их электронными оболочками (ионизационные потери) и генерация тормозного излучения при взаимодействии сатомными ядрами (радиационные потери).

Б.И. Тарусовым и Ю.Б. Кудряшовым было показано, что свободные радикалы могут возникать при действии радиации и в неводных средах - в липидных слоях биомембран. Эта теория получила название "теории липидных радиотоксинов".

Своеобразной интегральной теорией, объясняющей биологическое действие ионизирующих излучений является структурно-метаболическая теория (1976). Автор этой теории А.М. Кузин считает, что нарушения под действием радиации обусловлены деструкцией всех основных биополимерных молекул, цитоплазматических и мембранных структур в живой клетке.

РАДИОАКТИВНОСТЬ - самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. 

Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение - это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия. Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны. Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце.  которое означает, что число распадов  , произошедшее за короткий интервал времени пропорциональнo числу атомов в образце 

Активностью радиоактивного вещества называется число ядер, распавшихся за единичный промежуток времени:

A = |ΔN|/Δt = λN.

Пери́од полураспа́да — время T½, в течение которого система распадается с вероятностью 1/2.

Э. Резерфорд экспериментально установил (1899), что соли урана испускают лучи трёх типов, которые по-разному отклоняются в магнитном поле:

лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами;

лучи второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц, их назвали β-лучами (существуют, однако, позитронныебета-лучи, отклоняющиеся в противоположную сторону);

лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением.

64.

Дозиметрия ионизирующих излучений — раздел прикладной ядерной физики, в котором рассматриваются свойства ионизирующих излучений, физические величины, характеризующие поле излучения и взаимодействие излучения с веществом (дозиметрические величины).

Поглощённая до́за — величина энергии ионизирующего излучения, переданная веществу. Выражается как отношение энергии излучения, поглощённой в данном объёме, к массе вещества в этом объёме. 

Эквивалентная доза - мера биологического воздействия на живые организмы, рассчитывается как поглощенная доза, умноженная на коэфициент качества (КК), показывающий способность данного вида излучения повреждать ткани организма. 

Эскпозиционнная доза - основная характеристика, показывающая величину ионизации сухого воздуха. Единица измерения - Рентген.

Коэффициент качества для рентгеновских, бета и гамма лучей равен 1, для протонов и быстрых нейтронов 3-10, для альфа излучения 20.

Мощность дозы - показывает какую дозу облучения за промежуток времени получит предмет, либо живой организм.

Летальная доза – минимальная доза облучения, вызывающая 100% смерть у всехоблученных.

Полулетальная доза – минимальная доза облучения, которая вызывает смерть у половины облученных людей.

65.

Магнитный момент ядра – основная величина, характеризующая магнитные свойства ядра.

Собственный момент импульса ядра ≈ спин ядра ≈ складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов (моментов импульса, обусловленных движением нуклонов внутри ядра). Обе эти величины являются векторами, поэтому спин ядра представляет их векторную сумму.

Протонно-нейтронная модель ядра

Протонно-нейтронная модель ядра атома - модель атомного ядра, состоящего из протонов и нейтронов. Число протонов равно зарядовому числу, а общее число нейтронов таково, что общее число нуклонов равно массовому числу.  Массовое число = Зарядовое число + Число нейтронов. 

Ядерные силы - силы — удерживающие нуклоны (протоны и нейтроны) в ядре. Они действуют только на расстояниях не более 10 -13 см и достигают величины, в 100-1000 раз превышающей силу взаимодействия электрических зарядов.

Ядерные силы не зависят от заряда нуклонов. Они обусловлены сильным взаимодействием.

Дефект массы — разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, и массой покоя атомного ядра этого нуклида, выраженная в атомных единицах массы. Обозначается обычно  .

Согласно соотношению Эйнштейна,энергия связи пропорциональна дефекту массы:

где   — дефект массы и с — скорость света в вакууме.

Дефект массы характеризует устойчивость ядра.

График зависимости ядерной энергии связи от массового числа

66.

Устойчивость ядер (то есть их способность к длительно му существованию без изменений структуры и характеристик) должна опре деляться их массой A и зарядом z. Исследования стабильных ядер показа ли, что устойчивость ядер зависит от величины (A-z)/z, т.e. от соотношения чисел нейтронов и протонов в ядре.  Диаграмма устойчивости, которая как раз и иллюстрирует величину этого соот ношения в зависимости от массового числа ядер, наглядно свидетель ствует о том, что:

а) в ядрах лёгких элементов (с атомной массой до 20 а.е.м.) нейт ронно-протонное отношение приблизительно равно 1,то есть в лёгких ус тойчивых ядрах содержится приблизительно одинаковое число протонов и нейтронов; б) с дальнейшим ростом атомной массы нуклидов А диапазон устойчивости смещается в область больших нейтронно-протонных отношений, которые достигают при больших значениях А величины 1.65. Из последнего свойства устойчивых нуклидов следует важный практи ческий вывод: при делении тяжёлых ядер образующиеся осколки деления будут наверняка неустойчивы (то есть радиоактивны) по причине их пересы­щенности избыточными для их устойчивости нейтронами. 

Радионуклиды - нуклиды, ядра к-рых радиоактивны. По типам радиоактивного распада различают a-Р., b-Р., Р., ядра к-рых распадаются по типу электронного захвата, и Р., ядра к-рых подвержены спонтанному делению. Испускание радиоактивными ядрами a- и b-частиц, а также электронный захват обычно сопровождаются испусканием рентгеновского или g-излучения, поэтому большинство Р. представляет собой источники электромагн. излучения.

Способ освобождения энергии ядра – реакция синтеза и делеия

Реакция синтеза - разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

Реакция деления – реакция при которой тяжелое атомное ядро делится на два соизмеримых по массе фрагмента.

Ядерная реакция - это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

Цепная реакция деления ядер - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.

Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка). Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д. Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов. 

Меченые атомы

(изотопные индикаторы) содержат изотопы, которые по своим свойствам (радиоактивностиатомной массе) отличаются от других изотопов данного элемента. Их добавляют к химическому соединению или смеси, где находится исследуемый элемент; поведение меченых атомов характеризует поведение элемента в исследуемом процессе. В качестве меченых атомов используют как стабильные (устойчивые) изотопы, так и радиоактивные (неустойчивые) изотопы. Для регистрации радиоактивных меченых атомов применяют счетчики, ионизационные камеры; нерадиоактивные изотопы регистрируют с помощью масс-спектрографов.

Термоядерная реакция

разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

Элементарные частицы, классификация и типы взаимодействий

собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно

Классификация

По величине спина

Все элементарные частицы делятся на два класса:

  • бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

  • фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

По видам взаимодействий

Элементарные частицы делятся на следующие группы:

Составные частицы

  • адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

    • мезоны — адроны с целым спином, то есть являющиеся бозонами;

    • барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы

  • лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.

  • кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.

  • калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:

    • фотон — частица, переносящая электромагнитное взаимодействие;

    • восемь глюонов — частиц, переносящих сильное взаимодействие;

    • три промежуточных векторных бозона W+W и Z0, переносящие слабое взаимодействие;

    • гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, который, впрочем, пока ещё не обнаружен экспериментально.

Основные свойства

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

Античастицы.

частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от неё знаками некоторых характеристик взаимодействия (зарядов, таких как электрический и цветовой заряды, барионное и лептонное квантовые числа).

67.

Предмет квантовой физики

Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.

Модели атома Томпсона, Резерфорда

В 1904 году Дж. Томсон предлагает свою модель атома, которая состояла из массивного ядра, и внедренных в это ядро электронов.

В 1911 году Резерфорд выполняет эксперименты по уточнению строения атома.В 1913 году появляется простейшая планетарная модель "атома водорода" Бора-Резерфорда. 

Спектральные закономерности в излучении атома

Линейчатый спектр атома представляет собой совокупность большого числа линий, разбросанных по всему спектру без всякого видимого порядка. Однако внимательное изучение спектров показало, что расположение линий следует определенным закономерностям.   Яснее всего, конечно, Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). Ha, Нb, Нg и Hd — обозначения первых четырех линий серии, лежащих в видимой области спектра эти закономерности выступают на сравнительно простых спектрах, характерных для простых атомов. Впервые такая закономерность была установлена для спектра водорода.

Постулаты Бора.

основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Постулаты

  • Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

  • Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульсаквантуется , где   — натуральные числа, а   — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

  • При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии  , где   — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1]. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Рис. 326. Линейчатый спектр водорода (серия Бальмера, длины волн в нанометрах). Ha, Нb, Нg и Hd — обозначения первых четырех линий серии, лежащих в видимой области спектра

Серия Лаймана

Серия Бальмера

Серия Пашена и тд

Значение и недостатки теории Бора

Достоинства теории Бора

  • Объяснила дискретность энергетических состояний водородоподобных атомов.

  • Теория Бора подошла к объяснению внутриатомных процессов с принципиально новых позиций, стала первой полуквантовой теорией атома.

  • Эвристическое значение теории Бора состоит в смелом предположении о существовании стационарных состояний и скачкообразных переходов между ними. Эти положения позднее были распространены и на другие микросистемы.

Недостатки теории Бора

  • Не смогла объяснить интенсивность спектральных линий.

  • Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева.

  • Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движенияэлектрона — классическое, другое — уравнение квантования орбит — квантовое.

Теория Бора являлась недостаточно последовательной и общей. Поэтому она в дальнейшем была заменена современной квантовой механикой, основанной на более общих и непротиворечивых исходных положениях. Сейчас известно, что постулаты Бора являются следствиями более общих квантовых законов. Но правила квантования типа широко используются и в наши дни как приближенные соотношения: их точность часто бывает очень высокой.

Доказательство дискретности значений энергии атома: опыт Франка и Герца

Опыт Франка — Герца — опыт, явившийся экспериментальным доказательством дискретности внутренней энергии атома. Поставлен в 1913 Дж. Франком и Г. Герцем.

На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющая электроны, и снимается зависимость силы тока I от V. К сетке C2 и анодуА прикладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.

В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эв значениях энергии электроны могут испытывать неупругие столкновения несколько раз.

Таким образом, опыт Франка — Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электро-магнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора

,

где E0 и E1 — энергии основного и возбужденного уровней энергии. В опыте Франка — Герца, E0 — E1 = 4,9 эв.

Артур Комптон, повторив (19221923) опыт Франка — Герца, обнаружил, что при V > 4,9 В пары Hg начинают испускать свет с частотой ν = ΔE/h, где ΔE = 4,9 эВ (h — постоянная Планка). Таким образом, возбуждённые электронным ударом атомы Hg испускают фотон с энергией 4,9 эВ и возвращаются в основное состояние.

В 1925 г. Густав Герц и Джеймс Франк были награждены Нобелевской премией за открытие законов соударения электрона с атомом.

68.

Волновые свойства движущихся микрочастиц

Универсальность корпускулярно-волновой концепции

Французский ученый Луи де Бройль (1892–1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами.

Согласно де Бройлю с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики энергия Е и импульс р, а с другой, – волновые характеристики – частота v и длина волны . Формулы, связывающие корпускулярные и волновые свойства частиц, такие же, как и для фотонов:

Е= h; р = h/λ.

Длина волны Де-Бройля

Во́лны де Бро́йля — волны, связанные с любыми микрочастицами и отражающие их волновую природу.

Дифракция электронов

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала.

Электронография

метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Э. — дифракция электронов (см. Дифракция частиц); при прохождении через вещество электроны, обладающие волновыми свойствами (см. Корпускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.

Принцип действия электронного микроскопа

Электронный микроскоп перевернут «вверх дном» по сравнению со световым микроскопом. Излучение подается на образец сверху, а изображение формируется внизу. Принцип действия электронного микроскопа в сущности тот же, что и светового микроскопа. Электронный пучок направляется конденсорными линзами на образец, а полученное изображение затем увеличивается с помощью других линз.

В таблице суммированы некоторые сходства и различия между световым и электронным микроскопами. В верхней части колонны электронного микроскопа находится источник электронов — вольфрамовая нить накала, сходная с той, какая имеется в обычной электрической лампочке. На нее подается высокое напряжение (например, 50 000 В), и нить накала излучает поток электронов. Электромагниты фокусируют электронный пучок.

Элементы электронной оптики-устройство и принцип действия магнитной линзы

Магнитные фокусирующие линзы

Задача превращения потока электронов в тонкий электронный луч, обладающий в плоскости экрана минимальным поперечным сечением и большой плотностью тока, решается с помощью электростатических и магнитных линз, образуемых специальными электродами, составляющими фокусирующую систему электроннолучевой трубки.

Магнитная линза

Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. В ОПЭМ можно получить увеличение до 1 млн. 1 - источник электронов; 2 - ускоряющая система; 3 - диафрагма; 4 -конденсорная линза; 5 - образец; 6 - объективная линза; 7 - диафрагма; 8 - проекционная линза; 9 - экран или пленка; 10 - увеличенное изображение.

69.

Основные представления квантовой механики.

Принцип неопределенности

Волновая функция

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Неопределенность между координатой и импульсом

  • - среднеквадратическое отклонение координаты частицы М от оси х

  • -среднеквадратическое отклонение импульса

h-постоянная Планка,

Неопределенность между энергией и временем

ДелтаЕ – среднеквадратическое отклонение энергии

ДельтаТ-время обнаружения частицы

Физический смысл соотношения неопределенностей

ни она частица не может остановиться, то есть перестать изменять своё расположение (или пространственные координаты) относительно других объектов.

70.

Волнова́я фу́нкция, или пси-функция — комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Уравнение Шредингера(для стационарных состояний)

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Если в потенциальную яму попала частица, энергия которой ниже, чем необходимая для преодоления краёв ямы, то возникнут колебания частицы в яме. Амплитуда колебаний будет обусловлена собственной энергией частицы. Частица, находящаяся на дне потенциальной ямы, пребывает в состоянии устойчивого равновесия, то есть при отклонении частицы от точки минимума потенциальной энергии возникает сила, направленная в противоположную отклонению сторону. Если частица подчиняется квантовым законам, то даже несмотря на недостаток энергии она с определённой вероятностью может покинуть потенциальную яму (явление туннельного эффекта).

Туннельный эффект

преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера.

Гармонический осциллятор (в классической механике) — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы , пропорциональной смещению (согласно закону Гука).

71.

Спектральные приборы, приборы для исследования спектрального состава по длинам волн электромагнитных излучений в оптическом диапазоне (10-3—103 мкм; см. Спектры оптические), нахождения спектральных характеристик излучателей и объектов, взаимодействовавших с излучением, а также для спектрального анализа. С. п. различаются методами спектрометрии, приёмниками излучения, исследуемым (рабочим) диапазоном длин волн и др. характеристиками.

Спектроскоп — оптический прибор для визуального наблюдения спектра излучения. Используется для быстрого качественного спектрального анализа веществ в химии, металлургии (например, стилоскоп) и т. д. Разложение излучения в спектр осуществляется, например, оптической призмой. С помощью флюоресцентного окуляра визуально наблюдают ультрафиолетовый спектр, с помощью электронно-оптического преобразователя — ближнюю инфракрасную область спектра.

Спектрограф - спектральный прибор, в котором приёмник излучения регистрирует практически одновременно весь спектр, развёрнутый в фокальной плоскости оптической системы. В качестве приёмников излучения в С. служат фотографические материалы, многоэлементные фотоприёмники или электроннооптические преобразователи. Если регистрирующее устройство приспособлено для исследования быстро меняющихся во времени спектров, то в зависимости от конструкции С. называется киноспектрографом, спектрохронографом, хроно-спектрографом.

Сплошной спектр - непрерывный спектр, спектр электромагнитного излучения, распределение энергии в котором характеризуется непрерывной функцией частоты излучения или длины его волны

Линейчатый спектр - спектр, состоящий из отдельных узких спектральных линий. Линейчатые спектры излучаются веществами в атомарном состоянии.

Полосатые спектры - оптич. спектры молекул и кристаллов. Возникают при электронных переходах в молекулах или межзонных переходах в кристаллах, состоят из широких спектральных полос, положение к-рых различно для разных в-в. В спектрах простых молекул электронные полосы распадаются на б. или м. узкие колебат. полосы и вращат. линии.

Методы СА

Эмиссионный СА(по спектрам

испускания атомов, ионов и молекул, возбуждённым различными источниками

электромагнитного излучения в диапазоне от g-излучения до микроволнового),

атомно-абсорбционный СА осуществляют по спектрам поглощения

электромагнитного излучения анализируемыми объектами (атомами, молекулами,

ионами вещества, находящегося в различных агрегатных состояниях)

72.

Спектральные серии водорода

Серия Лаймана

Открыта Т. Лайманом в 1906 году. Все линии серии находятся в ультрафиолетовом диапазоне. Серия соответствует формуле Ридберга при n' = 1 и n = 2, 3, 4,… Линия Lα = 1216 Å является резонансной линией водорода. Граница серии — 911,8 Å.

Серия Бальмера

Открыта И. Я. Бальмером в 1885 году. Первые четыре линии серии находятся в видимом диапазоне. Серия соответствует формуле Ридберга при n' = 2 и n = 3, 4, 5,… Линия Hα = 6565 Å. Граница серии — 3647 Å.

Серия Пашена

Предсказана Ритцем в 1908 году на основе комбинационного принципа. Открыта Ф. Пашеном в том же году. Все линии серии находятся в инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 3 и n = 4, 5, 6,… Линия Pα = 18756 Å. Граница серии — 8206 Å.

Серия Брэккета

Открыта Ф. С. Брэккетом в 1922 году. Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 4 и n = 5, 6, 7,… Линия Bα = 40522 Å. Граница серии — 14588 Å.

Серия Пфунда

Открыта А. Г. Пфундом в 1924 году. Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 5 и n = 6, 7, 8,… Линия Pfα = 74598 Å. Граница серии — 22794 Å.

Серия Хэмпфри

Открыта К. Д. Хэмпфри в 1953 году. Все линии серии находятся в далёком инфракрасном диапазоне. Серия соответствует формуле Ридберга при n' = 6 и n = 7, 8, 9,… Основная линия 123718 Å. Граница серии — 32823 Å.

-формула Бальмера

Спектра́льный терм или электро́нный терм атома, молекулы или иона — конфигурация (состояние) электронной подсистемы, определяющая энергетический уровень. Иногда под словом терм понимают собственно энергию данного уровня. Переходы между термами определяют спектры испускания и поглощения электромагнитного излучения.

.

73. энергетические уровни молекул

Молекулярные спектры гораздо сложнее и разнообразнее атомных. Это обусловлено тем, что в молекулах имеются дополнительные степени свободы и наряду с движением электронов вокруг ядер атомов, образующих молекулу, происходят колебания самих ядер относительно равновесного положения, а также вращение молекулы как целого. Ядра в молекуле образуют линейную, плоскую или трехмерную конфигурацию. Плоская и трехмерная молекулы, состоящие из N атомов, обладают 3N-6 колебательными и тремя вращательными степенями свободы, а линейная - 3N-5 колебательными и двумя вращательными степенями свободы. Таким образом, молекула кроме электронной энергии имеет колебательную и вращательную внутренние энергии, а также новые системы уровней.

Комбинационное рассеяние света (эффект Рамана)неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В отличие от рэлеевского рассеяния, в случае комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.

Спектроскопия комбинационного рассеяния света (или рамановская спектроскопия) — эффективный метод химического анализа, изучения состава и строения веществ.

ВОЗБУЖДЕНИЕ АТОМА И МОЛЕКУЛЫ

- квантовый переход атома или молекулы с более низкого (напр., основного) уровня энергии на более высокий при поглощении ими фотонов (фотовозбуждение) или при столкновениях с электронами и др. частицами

-Под действием света относительно слабой интенсивности

-При столкновениях с электронами и др. атомными частицами

74. особенности поведения электрона в атоме водорода

Первая особенность. Энергия свободного электрона, так же как и энергия тела, может изменяться непрерывно, но энергия связанного электрона, в частности электрона в атоме, может принимать только вполне определенные значения.

Вторая особенность. Электрон в одних случаях проявляет свойства частицы вещества, а в других – волновые свойства. Такая двойственность поведения электрона и других микрочастиц (дуализм) – одно из общих свойств материи (и вещества, и поля). Оно называется "корпускулярно-волновой дуализм" или "дуализм волна-частица ".

Третья особенность. Чем с большей точностью определяют положение электрона в пространстве, тем с меньшей точностью можно определить его скорость. И наоборот, чем с большей точностью определяют скорость электрона (абсолютную величину и направление), тем с меньшей точностью можно определить его положение в пространстве.

уравнения Шрёдингера для атома водорода. Так как потенциальная функция электрона в атоме водорода имеет вид где e — заряд электрона (и протона), rрадиус-вектор, то уравнение Шрёдингера запишется следующим образом:

Здесь ψ — волновая функция электрона в системе отсчёта протона, m — масса электрона, постоянная Планка, E — полная энергия электрона, оператор Лапласа.

Квантовые числа

Главное К. ч. n = 1, 2, 3,... определяет уровни энергии электрона.

Азимутальное (или орбитальное) К. ч. l = 0, 1, 2,..., n —1 задаёт спектр возможных значений квадрата орбитального момента количества движения электрона: .

Магнитное К. ч. ml характеризует возможные значения проекции Mlz орбитального момента Ml на некоторое, произвольно выбранное, направление (принимаемое за ось z): ; может принимать целые значения в интервале от — l до + l (всего 2 l + 1 значений).

Магнитное спиновое К, ч., или просто спиновое К. ч., ms характеризует возможные значения проекции спина электрона и может принимать 2 значения:

ms = ± 1/2.

K-слой является первым от ядра атома, ему соответствует главное квантовое число n = 1, L-слой — вторым, M-слой — третьим и т. д. Электроны, образующие данный слой, могут обладать несколько отличающейся друг от друга энергией и иметь орбитали различных форм. Из квантовомеханической теории следует, что с увеличением главного квантового числа n изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения n равно квадрату главного квантового числа (n2). Второе квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом. При данном главном вантовом числе n орбитальное квантовое число l может принимать любые целочисленные значения от 0 до n–1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне. Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню — два подуровня: s и p; третьему уровню — три подуровня: s, p и d; четвёртому и следующим уровням —четыре подуровня: s, p, d и f.

75.Введение в квантовую биофизику

Фотобиологические процессы

происходят в результате воздействия света на организм. Важнейшими Ф. п. у растений являются фотосинтез (синтез органических молекул за счет энергии солнечного света), фототаксис (движение организмов, например бактерий, к свету или от света), фототропизм (поворот листьев или стеблей растений к свету или от света), фотопериодизм (регуляция суточных и годовых циклов жизни путем циклических воздействий свет — темнота).

У человека и животных к Ф. п. относят Зрение, фотопериодизм и др.

Стадии фб процесса:

1. Поглощение света в биологических системах

2. Люминесценция в биологических системах

3. Первичные и начальные стадии фотопревращений биомолекул

4. Механизмы фотобиологических процессов при действии ультрафиолетового излучения

5. Фотофизические и фотохимические стадии зрения у позвоночных и фотосинтеза в галобактериях

Поглощение света, уменьшение интенсивности оптического излучения (света), проходящего через материальную среду, за счёт процессов его взаимодействия со средой. Световая энергия при П. с. переходит в различные формы внутренней энергии среды; она может быть полностью или частично переизлучена средой на частотах, отличных от частоты поглощённого излучения.

Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Что получило большое значение в фармации.

Пути растраты энергии:

1. Безизлучательный переход в основное состояние с обращением спина электрона.

2. Испускание кванта фосфоресценции.

3. Фотохимическая реакция.

4. Передача энергии возбуждения другой молекуле.

Люминесце́нция — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения.

Фотолюминесценция, люминесценция, возбуждаемая светом. Простейший случай Ф. – резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет возбуждающее излучение.

Флуоресце́нция (вариант: флюоресценция) — физический процесс, разновидность люминесценции. Флуоресценцией обычно называют излучательный переход возбужденного состояния с самого нижнего синглетного колебательного уровня S1 в основное состояние S0. В общем случае флуоресценцией называют разрешенный по спину излучательный переход между двумя состояниями одинаковой мультиплетности: между синглетными уровнями или триплетными . Типичное время жизни такого возбужденного состояния составляет 10−11−10−6 с.

Стокса правило, Стокса закон, утверждает, что длина волны фотолюминесценции больше, чем длина волны возбуждающего света.

Миграция энергии, перенос энергии, самопроизвольный переход энергии с одной частицы — донора (атома или молекулы) на другую — акцептор. М. э. не связана ни с испусканием фотона донором и его поглощением акцептором, ни с обменом электронами или атомами между взаимодействующими частицами. М. э. — результат электромагнитного взаимодействия частиц (индуктивно-резонансный механизм) либо частичного перекрывания их электронных оболочек (обменно-резонансный механизм).

ЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ, совокупность методов анализа, основанных на явлении люминесценции. Наиб. распространение получил анализ, основанный на фотолюминесценции исследуемого в-ва, возбуждаемой УФ излучением. Источниками последнего служат кварцевые газоразрядные ртутные или ксеноновые лампы и УФ лазеры. Pегистрируют люминесценцию визуально, фотографически или фотоэлектрически с помощью спектрографов, фотометров и спектрофотометров. Л. а. подразделяют на качественный и количественный. Качеств. Л. а. проводят по спектрам люминесценции.

76. Процесс фотохимического превращения можно разделить на три стадии:

акт поглощения, при котором образуется электронно-возбуждённое состояние;

первичные фотохимические процессы, в которых участвуют электронно-возбуждённые состояния;

вторичные, или темновые реакции различных химических веществ, образующихся в результате первичных процессов.

ФОТОБИОЛОГИЧЕСКИЕ РЕАКЦИИ Функционально-физиологические (преимущественно видимый свет) Деструктивно-модифицирующие (преимущественно ультрафиолетовый свет) Энергетические Информационные Биосинтетические Летальные Мутационные Патофизиологические Классификация фотобиологических реакций Трансформация энергии в первичных процессах фотосинтеза .

ФОТОХИМИЧЕСКИЙ СПЕКТР ДЕЙСТВИЯ

Как и все другие вещества, белки поглощают с различной вероятностью излучение с разной длиной волны. Поэтому поперечное сечение поглощения и поперечное сечение инактивации изменяются с изменением длины волны падающего света. Зависимость s от длины волны падающего на объект излучения назовем спектром поглощения данного объекта (в нашем случае раствора фермента). Зависимость s от длины волны излучения назовем спектром действия.

Механизм действия УФ-лучей основан на способности некоторых атомов и молекул избирательно поглощать энергию света. В результате этого молекулы тканей переходят в возбужденное состояние, что запускает фотохимические процессы в чувствительных к УФ-лучам молекулах белка, ДНК и РНК.

Как и другие ионизирующие излучения, жесткие УФ-лучи характеризуются энергией квантов, достаточной для разрыва не только электростатических, ионных связей между атомами, но и многих ковалентных. Образующиеся при таком разрыве «обломки» молекул со свободными валентными связями, так называемые свободные радикалы, обладают очень высокой химической активностью.

77. Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—400 нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии зависимость интенсивности поглощения падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах). Приборы спектрофотометрии — спектрофотометры.

Микроспектрофотометрия проводится при свете с определенной длиной волны, обеспечивающей максимум поглощения хромофором.

Люминесцентная микроскопия, метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучами

Зависимость параметров люминесценции молекул и ионов от свойств матрицы, рассматривавшееся ранее как помеха к внедрению люминесцентного анализа, стало в последнее время активно использоваться при создании высокочувствительных люминесцентных зондов. Показателен пример полимеразной цепной реакции (ПЦР) с изменением спектра люминесценции зонда за счет изменения условий переноса энергии при определении искомой ДНК. Это же свойство в некоторых случаях позволяет повысить селективность анализа за счет подбора условий (температура, растворитель, структура ближайшего окружения), оптимальных для индивидуального объекта.

78. Радикалы свободные, кинетически независимые частицы, характеризующиеся наличием неспаренных электронов. По другому определению свободный радикал — вид молекулы или атома, способный к независимому существованию (то есть обладающий относительной стабильностью) и имеющий один или два неспаренных электрона.

Их подразделяют на короткоживущие и долгоживущие.

Первичные свободные радикалы постоянно образуются в процессе жизнедеятельности организма в качестве средств защиты против бактерий, вирусов, чужеродных и переродившихся (раковых) клеток.

Вторичные радикалы, в отличие от первичных, не выполняют физиологически полезных функций. Напротив, они оказывают разрушительное действие на клеточные структуры, стремясь отнять электроны у «полноценных» молекул.

Хемилюминесценция — люминесценция (свечение) тел, вызванная химическим воздействием (например, свечение фосфора при медленном окислении), или при протекании химической реакции (например, каталитические реакции некоторых эфиров щавелевой кислоты с пероксидом водорода в присутствии люминофора). Хемилюминесценция связана с экзотермическими химическими процессами.

Электронный Парамагнитный Резонанс (ЭПР)Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами.

Я́дерный магни́тный резона́нс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

79. опти́ческий ква́нтовый генера́тор — устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

1.Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла).

2. Полупроводниковые лазеры

3. Лазеры на красителях.

4. Газовые лазеры

5. Газодинамические лазеры. И т.д.

Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней.

Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых n2 > n1, т. е. создать инверсную населенность уровней.

На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10–3 с. Такие уровни называются метастабильными.

80.Рубиновый лазер.

Рубин остается, несомненно, наиболее широкоиспользуемым материалом для твердотельных лазеров, применяемых в голографии, главным образом из-за большой энергии выходного излучения и его длины волны. Стержень рубинового лазера изготовляется из искусственного сапфира А1203, в который вводится примесь Сг203 в количестве 0,05 вес.%. Замена небольшого количества ионов А13+ на ионы Сг3+ приводит к окрашиванию вещества в ярко-розовый цвет. Действие лазера является результатом возбуждения ионов светом накачки. Рубиновый лазер излучает свет с длиной волны 0,6943 мкм.

Ге́лий-нео́новый ла́зер — лазер, активной средой которого является смесь гелия и неона. Гелий-неоновые лазеры часто используются в лабораторных опытах и оптике. Имеет рабочую длину волны 632,8 нм, расположенную в красной части видимого спектра.

Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000 вольт, расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал — полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1 % падающего излучения на выходной стороне устройства.

Гелий-неоновые лазеры компактны, типичный размер резонатора — от 15 см до 0,5 м, их выходная мощность варьируется от 1 до 100 мВт.

Режимы работы лазера:

Непрерывный

Умеренных волн

Гигантских волн.

81.В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).

биофизические механизмы действия лазерного излучения Инфракрасное

излучение в диапазоне длин волн 0,85-1,3 мкм проникает в биологические ткани на глу­бину до 6-7 см. Поглощение энергии ИК-излучения кислородом, водой, биологическими структурами (в первую очередь мембра­нами клеток) происходит по резонансному механизму (слабое воздействие усиливается системами организма), тепло утилизи­руется жидкими средами организма (кровью, лимфой, тканевой жидкостью). Неравномерность поглощения лазерного излучения и света лежит в основе тепловой неравновесности в биологиче­ских тканях, что может приводить к деформациям клеточных мембран из-за изменения осмотического давления, и воздействию на них электрического потенциала. Это влияет на метаболизм в биологических тканях и является одним из механизмов биофизи­ческого действия лазерного излучения.

82.Биологические мембраны

Схема строения биологической мембраны

Схема строения биологической мембраны

Биологические мембраны, тонкие пограничные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частиц, а также канальцев и пузырьков, пронизывающих протоплазму. Толщина Б. м. не превышает 100 . Важнейшая функция Б. м. — регулирование транспорта ионов, сахаров, аминокислот и других продуктов обмена веществ (см. Проницаемость биологических мембран). Первоначально термин "Б. м." использовали при описании всех видов пограничных структур, встречающихся в живом организме, — покровных тканей, слизистых оболочек желудка и кишечника, стенок кровеносных сосудов и почечных канальцев, миелиновых оболочек нервных волокон, оболочек эритроцитов и др.

Значительный прогресс в представлениях о структуре и функции Б. м. достигнут при изучении их моделей — искусственных фосфолипидных мембран, состоящих из бимолекулярного слоя фосфолипидов. Физические свойства такой плёнки близки к свойствам природных Б. м.: толщина её достигает 61 , а электрическая ёмкость 1 мкф/см2. При добавлении в раствор, омывающий искусственную мембрану, небольшого количества белка электрическое сопротивление её резко уменьшается (~ в 1000 раз), приближаясь к электрическому сопротивлению природных Б. м. При определённых условиях в такой "реконструированной" мембране могут возникать электрические колебания, по амплитуде, длительности и условиям возникновения напоминающие электрические колебания в нервном волокне при возбуждении. Добавление в раствор, омывающий эту мембрану, антибиотиков типа валиномицина, грамицидина и др. вызывало появление избирательной проницаемости для ионов калия и натрия. Исследования Б. м. ведутся интенсивно; в ближайшем будущем можно ожидать полной расшифровки их структуры и функции.

ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ МЕМБРАН КЛЕТКИ

Данная модель основана на предшествующих моделях структурно-функциональной организации мембран клетки. Живая мембрана представляет собой двумерный раствор глобулярных интегральных белков, диспергированных в жидком фосфолипидном матриксе. Экспериментальные подтверждения данного предположения были получены при искусственно вызванном слиянии двух разных родительских клеток. При образовании плазматической мембраны гибридной клетки происходит быстрое стохастическое перемещение с систематическим упорядочением видоспецифичных белков и фосфолипидов. Такие перемещения в плоскости мембраны были названы латеральной подвижностью (диффузией) компонентов мембран.

83. Динамические свойства биологических мембран обусловлены текучестью билипидного слоя, гидрофобная область которого в жидкокристаллическом состоянии имеет микровязкость, сравнимую с вязкостью легкой фракции машинного масла. Поэтому молекулы липидов, находящиеся в бислое, обладают довольно высокой подвижностью и могут совершать разнообразные движения - поступательные, вращательные и колебательные.

Фазовый переход липидов является эндотермическим процессом, сопровождающимся изменением энтропии и энтальпии. Липидным структурам присущ лиотропный мезоморфизм (зависимость состояния от гидратации) и термотропный мезоморфизм (зависимость структуры от температуры). Оба свойства связаны между собой. Фазовый переход липидов "гель — жидкий кристалл" осуществляется при температуре, значение которой зависит от содержания воды в системе. Оно минимально, если общее содержание воды превышает то количество, которое могут связать липидные структуры. В то же время при температуре выше критической липиды могут находиться в упорядоченном состоянии при недостатке воды. Перекисное окисление липидов, увеличивающее содержание воды в бислое, существенно влияет на фазовое состояние мембраны.

Термотропные фазовые переходы липидов в мембране происходят в сравнительно широком температурном интервале (At -0,2— 1,0°С). Это обусловлено тем, что в бислое одна фаза ("жидкая") обязательно возникает в матриксе другой ("твердой") . Сосуществование в липидном бислое двух фаз устанавливает между ними сложное равновесие, приводя к снижению степени кооперативности перехода. Обычно кооперативные фазовые переходы липидов в мембране затрагивают несколько сотен молекул. В нативной мембране постоянно находится большое число кооперативных единиц той или иной фазы. Этот полиморфизм является мощным регулятором транспортных систем мембраны.

Мембранные белки так же, как и мембранные липиды , способны вращаться вокруг оси, перпендикулярной плоскости бислоя - вращательная диффузия, а так же перемещаться в плоскости самой мембраны - латеральная диффузия . Однако они не могут перевертываться и осуществлять флип-флоп . Измерение скоростей латеральной диффузии различных белковых молекул во многих мембранах показало, что коэффициент диффузии D может варьировать в довольно широком диапазоне значений - от 5х1О-9 до 1О-12 степени кв.см/с.

84. ФЛУОРЕСЦЕНТНЫЙ анализ - совокупность методов качественного и количественного анализа, основанного на флуоресценции исследуемого вещества. Качественный анализ осуществляют по цвету флуоресцентного излучения, количественный - по интенсивности последнего.

Методы исследования флуоресценции конкретных веществ обладают высокой чувствительностью, а также удобным временным диапазоном, так как испускание флуоресценции происходит через 10-8 с (10 нс) после поглощения света. За это время происходит множество различных молекулярных процессов, которые влияют на спектральные характеристики флуоресцирующего соединения. В настоящее время созданы приборы, позволяющие измерять флуоресценцию 10-18 с зонда в живой клетке за время около 10-5 с, что намного превосходит чувствительность и быстродействие даже таких чувствительных методов, как радиоизотопный и иммуноферментный. Кроме того, исследование флуоресценции позволяет получить информацию о состоянии живых систем, не повреждая их, и не требует большого количества биологического материала. Имея такие преимущества, флуоресцентные методы позволяют просто и экономично решить многие задачи клинической диагностики, экологического контроля и физико-химического анализа и все шире применяются в медицинских и биохимических исследованиях.

С помощью флуоресцентных зондов можно исследовать молекулярные механизмы возникновения и развития патологических процессов, действие на организм биологически активных веществ и лекарственных препаратов. Флуоресцентные зонды применяются также для диагностики и прогноза развития заболеваний, выявления факторов риска и контроля эффективности лечения. Зондовая флуоресценция чувствительна к структурно-функциональным изменениям в биологических мембранах, микровязкости ее липидного бислоя, связыванию с белками и другими веществами, структурным перестройкам в белках, изменению мембранного потенциала и концентрации внутри-клеточного кальция и др. Анализируя спектр флуоресценции клеток и мембран, связанных с зондом, можно определить полярность микроокружения флуорофора. Интенсивность и время жизни флуоресценции зонда характеризуют подвижность сольватной оболочки, поляризация флуоресценции – вращательную подвижность, ориентацию и вязкость микроокружения зонда. Тушение флуоресценции зонда посторонними веществами позволяет установить доступность флуорофора для тушителя, его локализацию в белках и мембранах клеток и их проницаемость для тушителей, скорость диффузии. По переносу энергии возбуждения с мембранных белков на флуоресцентный зонд и по степени эксимеризации зонда можно определить расстояние между флуорофорами и вязкость среды, окружающей зонд

формула перрена яблонского- не нашла.

85. Метод электронного парамагнитного резонанса. Физические принципы и применение в изучении биополимеров.

Если внести частицу в определённым магнитным моментом в постоянное магнитное поле, то магнитный момент выстроится вдоль направления магнитного поля и будет прецессировать с частотой . Если теперь на частицу действовать слабым переменным магнитным полем, направленным перпендикулярно опорному полю, то при совпадении частоты переменного измерительного поля с частотой прецессии частицы, возникнет резонанс и сильное поглощение волны измерительного поля.

Электрон имеет спин ½, его энергетический уровень расщепляется на два, что соответствует переходу между спинами. В большинстве органических соединений спины электронов скомпенсированы и ЭПР не наблюдается. ЭПР наблюдается только у свободных радикалов и молекул с нечётным числом электронов, при этом, проявляются характеристические спектры, зависящие от электронного строения системы.

ЭПР используется при изучении реакций с участием свободных радикалов или белков, содержащих в качестве кофакторов атомы металлов с нескомпенсированным спином.

Также широко используется приём присоединения к исследуемым молекулам спиновых метоков и эффект Мессбауэра как анализатор.структуры атома, окружающих групп и характера цессии частицы, и частицы с чь слабым переменным магнитным полем, направленным перпендикулярно опорному полю, то при совпаде – свободных радикалов, содержащих неспаренный электрон. ЭПР спектр спин-метки зависит от её электронного окружения, конформации молекулы, к которой она присоединена.

   Метод ядерного магнитного резонанса. Физические принципы и применение в изучении биополимеров.

Если внести частицу в определённым магнитным моментом в постоянное магнитное поле, то магнитный момент выстроится вдоль направления магнитного поля и будет прецессировать с частотой . Если теперь на частицу действовать слабым переменным магнитным полем, направленным перпендикулярно опорному полю, то при совпадении частоты переменного измерительного поля с частотой прецессии частицы, возникнет резонанс и сильное поглощение волны измерительного поля.

Ядерный спин имеют атомы, у которых нечётно хотя бы одно атомное число, массовое или порядковое. Ядерный спин равен нулю у  и не равен нулю у

При включении магнитного поля для протона возникают два уровня, соответствующие параллельному и антипараллельному направлениям спина. Частоту переменного поля увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен, а интенсивность поглощения записывают. В результате получается спектр поглощения, который подвергается анализу. Сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра, а интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов. Таким образом, можно получить количественные и качественные характеристики образца.

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения. Это позволяет определить структуру окружения атомов и структуру самого вещества.

Используют также приёмы обогащения образцов контрастирующими метками, наблюдения процессов включения метки в состав объекта. Важным свойством метода является возможность его использования на живых биологических объектах.

Существует два метода ЯМР: метод постоянного поля и импульсный метод.

Частным случаем применения ЯМР является метод томографии или ЯМР-интроскопии, применяемый в-основном в медицине.

86

87

Мембранный транспорт — транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов — простой диффузии, облегченной диффузии и активного транспорта.

Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости, то есть способностью пропускать одни вещества и не пропускать другие.

Уравнение Нернста-Планка:

Уравнение Фика:

Уравнение Берлунда:

88. Простая диффузия

По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2,N2,бензол) и полярные маленькие молекулы (CO2, H2O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Простая диффузия неполярных веществ не требует наличия специальных структур и зависит только от растворимости в липидах – липофильности – и от вязкости мембраны.

Облегчённая диффузия для неполярных веществ происходит с участием специальных переносчиков. Этот перенос может происходить в симпорте или антипорте с другими веществами.

89

О́смос (от греч. ὄσμος — толчок, давление) — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).

Более широкое толкование явления осмоса основано на применении Принципа ЛеШателье — Брауна: если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Аномальный осмос — движение растворителя через полупроницаемую мембрану из раствора с бо́льшим осмотическим давлением. Аномальный осмос наблюдается в растительных и животных тканях, например, при диффузии воды через мембраны клеток растений. Эффект аномального осмоса объясняется наличием противоположного электроосмотическогодавления.

ФИЛЬТРАЦИЯ - движение жидкости или газа сквозь пористую среду.

Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

Осмотическое концентрирование. В зависимости от состояния водного баланса организма почки млекопитающих и птиц выделяют разведенную иликонцентрированную мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, межклеточная ткань (рис. 12.13.). В почках у млекопитающих2/3 ультрафильтрата, образовавшегося в клубочках, реабсорбируется к концу проксимального сегмента. Оставшаяся в канальцах жидкость содержит осмотически активные вещества в такой же концентрации, как и плазма крови, хотя и отличается от нее по составу вследствие реабсорбции органических веществ и ионов. Далее канальцевая жидкость переходит из коркового слоя почки в мозговое вещество — в нисходящий отдел петли Генле — и движется до вершины почечного сосочка, где каналец изгибается на 180° и моча переходит в восходящий отдел петли, расположенный параллельно ее нисходящему отделу. В нем жидкость течет в направлении от вершины сосочка к коре почки.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.

Бимолекулярный слой фосфолипидов составляет основу любой клеточной мембраны. Фосфолипиды относятся к жидким кристаллам смектического типа. Как в любом реальном кристалле в пленке содержится определенное количество точечных дефектов, эволюционирующих со временем в гидрофильные поры. Электрическими методами проведено систематическое исследование одиночных трансмембранных пор, возникающих в плоских фосфолипидных мембранах при фазовых переходах жидкокристаллическое состояние - гель, жидкокристаллическое состояние - гексагональная фаза II. Впервые обнаружены долгоживущие липидные поры со временем жизни порядка 1 с, появление которых в области фазового перехода подчиняется экспоненциальному распределению. Трансмембранные поры указанного типа обнаружены в БЛМ, сформированных из 11 видов специально синтезированных фосфолипидов, включающих помимо известных цвиттерионных фосфолипидов впервые используемые фосфатидные кислоты и катионные фосфолипиды. В предположении существенного изменения упругой энергии липидного бислоя при фазовом переходе предложена физическая модель формирования поры. Кривая зависимости энергии поры от радиуса выявляет локальный минимум, свидетельствующий об устойчивости поросодержащих БЛМ. Размер критической поры при этом достигает в радиусе 1,2 - 1,8 нм. Характерной чертой липидных пор, принципиально отличающей их от известных белковых и пептидных пор, является способность к самозалечиванию. Полученные данные о средних временах жизни липидных пор хорошо согласуются с вакансионно-диффузионной моделью, предложенной Бронштейном и Исеровичем (1982). Основной вывод состоит в том, что стабильность липидного бислоя и клеточной мембраны в целом определяется липидными порами. Судьба мембраны зависит вероятностным образом от того, будет ли липидная пора превышать некоторый критический радиус или нет. В первом случае мембрана порвется, во втором случае ее структура сохранится. При залечивании пор их радиусы пробегают все значения вплоть до минимальных. На последних этапах затекания липидные поры могут превращаться в водные поры, доступные только для молекул и ионов воды.

90 Основные особенности первично активного транспорта:

1.    Осуществляется против концентрационного градиента.

2.    Система первичного транспорта очень специфична.

3.    Для его обеспечения необходима АТФ или другие источники энергии.

4.    Обменивает один вид ионов на другой (К/Na насос).

5.    Активный транспорт с помощью ионных насосов избирательно подавляется блокирующими агентами.

Механизм вторично активного транспорта заключается в переносе веществ через мембрану против концентрационного градиента, обеспечиваемом энергией, которая высвобождается при переносе другого вещества по градиенту. В отличие от первично активного транспорта, энергия для которого высвобождается при гидролизе АТФ.

Механизм работы K/Na-АТФазы.

Фермент состоит из двух субъединиц, закреплённых в мембране. Для закрепления необходимы фосфолипиды, при их отсутствии прекращается АТФазная активность фермента.

1.    На первом этапе фермент расположен у внутренней стороны мембраны, где происходит его фосфорилирование и присоединение иона Na+. Происходит расщепление АТФ. Это приводит к изменению конформации белка и перемещению его к наружной стороне мембраны. Энергия для этого процесса берётся от расщепления АТФ.

2.    Изменение приводит к тому, что новаяконформация имеет низкое сродство к Na+ и высокое сродство к K+. При этом, на внешней стороне мембраны выделяется натрий и присоединяется калий. Это в свою очередь приводит к новому изменению конформации и возвращению K/Na-АТФазы к внутренней стороне мембраны.

3.    На внутренней стороне мембраны происходит отщепление АДФ и фосфата, фермент снова готов к новому циклу работы.

Энергия АТФ используется для осуществления переходов между конформациями, имеющими разное сродство к Na+ и K+. За каждый цикл работы переносится 2 иона калия и 3 иона натрия.

91Мембранный потенциал покоя. Его механизмы. Расчёт величины мембранного потенциала.

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек). Его можно рассчитать по равнению Нернста

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

•  поступление в клетку Na+ и Cl через неселективные ионные каналы; при этом поступление в клетку Cl дополнительно гиперполяризует мембрану, а поступление Na+– дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl и Na+ в 2,5 и 25 раза ниже, чем для К+.

•  прямой электрогенный эффект Na++ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (На 2 иона, поступающих в клетку K+ приходится 3 иона Na+, выносимых во внешнюю среду).

Расчёт величины ПП можно произвести и с учётом этих влияний. Влияния других ионов и электрогенного эффекта учитывается в формуле Томаса:

m – коэффициент электрогенности.

Если принять средние концентрации ионов и проводимости мембраны:

Тогда величина потенциала покоя получается порядка -60-70мВ.

94Модель Ходжкина-Хаксли. Её характеристика и значение для биофизики клетки.

Модель предполагает:

·        Изменение токов, текущих через мембрану и мембранного потенциала является следствием изменения проницаемости мембраны для натрия и калия.

·        Перенос натрия и калия осуществляется различными не взаимодействующими структурами.

·        Пропускная способность мембраны управляется электрическим полем. Во внутренней структуре мембраны присутствуют заряженные частицы, управляющие её проводимостью.

Суммарный ток через мембрану представили как сумму емкостного тока и ионных токов:

Было высказано предположение, что калий может проходить через мембрану, если к каналу одновременно подойдут 4 однозаряженных частицы. Эта вероятность была представлена, как

Для натрия проведение возможно при присоединении трёх активирующих частиц m и отсоединения одной блокирующей h.

При возрастании положительного мембранного потенциала изменяются коэффициенты α и β. Этот механизм лежит в основе потенциалзависимого переноса натрия и калия во время формирования ПД.

Модель Ходжкина-Хаксли даёт хорошее согласие с опытными данными и может быть использована для моделирования электрических процессов в мембране.

93

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]