Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы ксе.doc
Скачиваний:
10
Добавлен:
18.09.2019
Размер:
118.78 Кб
Скачать

1. Цели и задачи:

- понимание природы отчуждения гуманитарного и естественно - научного компонентов культуры и необходимость их воссоединения на основе целостного взгляда на мир;

- понимание задач и возможностей современного научного метода;

- изучение и понимание сущности наиболее фундаментальных законов природы, составляющих каркас современной физики, химии и биологии;

- формирование ясного представления о естественнонаучной картине мира как основе понимания целостности и многообразия природы;

- формирование представлений о революциях в естествознании и смене научных парадигм как ключевых этапах развития естествознания;

- формирование представления о принципах универсального эволюционизма и синергетики как диалектических принципах развития в приложении к неживой и живой природе, человеку и обществу.

2.

Естественнонаучная культура - это:

совокупный исторический объем знания о природе и обществе;

объем знания о конкретных видах и сферах бытия, который в сокращенно-концентрированной форме актуализирован и доступен изложению;

усвоенное человеком содержание накопленного и актуализированного знания о природе и обществе.

Гуманитарная культура - это:

совокупный исторический объем знания философии, религиоведения, юриспруденции, этики, искусствознания, педагогики, литературоведения и других наук;

системообразующие ценности гуманитарного знания (гуманизм, идеалы красоты, совершенства, свободы, добра и т. п.).

Специфика естественнонаучной культуры: знания о природе отличаются высокой степенью объективности и достоверности (истинности). Кроме того, это глубоко специализированное знание.

Специфика гуманитарной культуры: системообразующие ценности гуманитарного знания определяются и активизируются исходя из принадлежности индивида к определенной социальной группе. Проблема истинности решается с учетом знания об объекте и оценки полезности этого знания познающим или потребляющим субъектом. При этом не исключается возможность толкований, противоречащих реальным свойствам объектов, насыщенность теми или иными идеалами и проектами будущего.

3.

Научный метод — совокупность основных способов получения новых знаний и методов решения задач в рамках любой науки.

Метод включает в себя способы исследования феноменов, систематизацию, корректировку новых и полученных ранее знаний. Умозаключения и выводы делаются с помощью правил и принципов рассуждения на основе эмпирических (наблюдаемых и измеряемых) данных об объекте. Базой получения данных являются наблюдения и эксперименты. Для объяснения наблюдаемых фактов выдвигаются гипотезы и строятся теории, на основании которых формулируются выводы и предположения. Полученные прогнозы проверяются экспериментом или сбором новых фактов.

Важной стороной научного метода, его неотъемлемой частью для любой науки, является требование объективности, исключающее субъективное толкование результатов. Не должны приниматься на веру какие-либо утверждения, даже если они исходят от авторитетных учёных. Для обеспечения независимой проверки проводится документирование наблюдений, обеспечивается доступность для других учёных всех исходных данных, методик и результатов исследований. Это позволяет не только получить дополнительное подтверждение путём воспроизведения экспериментов, но и критически оценить степень адекватности (валидности) экспериментов и результатов по отношению к проверяемой теории.

4. Понятие модели в естественных науках подразумевает совокупность представлений, понятий или выводов, которые в нашем сознании связываются с рассматриваемым явлением и позволяет не только объяснить наблюдаемые факты, но и прогнозировать их.

Модель явлений может быть математической, т. е. содержать совокупность уравнений, решения которых описывают рассматриваемый круг явлений (пример такой модели - модель Максвелла электромагнитного поля).

Модель может быть логической, устанавливающей логическую последовательность фактов, присущих некоторому кругу явлений (сюда относится, например, модель эволюционного развития живой природы).

Модель может быть физической, когда для объяснения какого- либо явления привлекается некоторая совокупность физических представлений. Сюда относятся, например, молекулярная модель распространения тепла, волновая модель распространения света и т. д.

5. Научная картина мира — множество теорий в совокупности описывающих известный человеку природный мир, целостная система представлений об общих принципах и законах устройства мироздания. Картина мира — системное образование, поэтому её изменение нельзя свести ни к какому единичному (пусть и самому крупному и радикальному) открытию. Речь обычно идет о целой серии взаимосвязанных открытий (в главных фундаментальных науках), которые почти всегда сопровождаются радикальной перестройкой метода исследования, а также значительными изменениями в самих нормах и идеалах научности.

Чётко и однозначно фиксируемых радикальных смен научной картины мира, научных революций в истории развития науки можно выделить три, которые обычно принято персонифицировать по именам трёх ученых, сыгравших наибольшую роль в происходивших изменениях:

  1. Аристотелевская Период: VI—IV века до нашей эры (создание формальной логики)

  2. Ньютоновская научная революция XVI—XVIII века (появление механистической научной картины мира на базе экспериментально математического естествознания.)

  3. Эйнштейновская революция XIX—XX веков (была подорвана важнейшая предпосылка механистической картины мира — убежденность в том, что с помощью простых сил, действующих между неизменными объектами, можно объяснить все явления природы)

6. Эйнштейновская революция (рубеж XIX-XX веков). Ее обусловила серия открытий (открытие сложной структуры атома, явление радиоактивности, дискретного характера электромагнитного излучения и т.д.). В итоге была подорвана, важнейшая предпосылка механистической картины мира – убежденность в том, что с помощью простых сил действующих между неизменными объектами можно объяснить все явления природы.  

Фундаментальные основы новой картины мира:   общая и специальная теория относительности (новая теория пространства и времени привела к тому, что все системы отсчета стали равноправными, поэтому все наши представления имеют смысл только в определенной системе отсчета. Картина мира приобрела релятивный, относительный характер, видоизменились ключевые представления о пространстве, времени, причинности, непрерывности, отвергнуто однозначное противопоставление субъекта и объекта, восприятие оказалось зависимым от системы отсчета, в которую входят и субъект и объект, способа наблюдения и т.д.) квантовая механика (она выявила вероятностный характер законов микромира и неустранимый корпускулярно-волновой дуализм в самых основах материи).

Стало ясно, что абсолютно полную и достоверную научную картину мира не   удастся создать никогда, любая из них обладает лишь относительной истинностью

7. Развитие современного естествознания связано с повышением роли так называемых косвенных наблюдений. Так, например, объекты, изучаемые ядерной физикой, не могут наблюдаться ни непосредственно, с помощью органов чувств человека, ни опосредованно, с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, - это не сами микрообъекты, а только результаты их воздействия на определенные технические средства. Например, регистрацию взаимодействий элементарных частиц фиксируют только косвенно с помощью счетчиков (газозарядных, полупроводниковых и т.п.) или трековых приборов (камера Вильсона, пузырьковая камера и др.) Расшифровывая «картинки» взаимодействий, исследователи получают сведения о частицах и их свойствах.

8. Самый беглый анализ представлений древних ученых о материи показывает, что все они по духу своему были материалистическими, но общим их недостатком было, во-первых, сведение понятия материи к какому-то конкретному виду вещества или ряду веществ. Во-вторых, признание материи в качестве строительного материала, некоей первичной неизменной субстанции автоматически исключало выход за пределы имеющихся о ней представлений. Тем самым каким-либо конкретным видом вещества с присущими ему свойствами ограничивалось дальнейшее познание, проникновение в сущность материи. Все же большой заслугой древних материалистов было изгнание представлений о боге-творце и признание взаимосвязи материи и движения, а также вечности их существования.

Заметный след в развитии учения о материи оставили мыслители Древней Греции Левкипп и особенно Демокрит - родоначальники атомистического учения об окружающем мире. Они впервые высказали мысль о том, что все предметы состоят из мельчайших неделимых частиц - атомов. Первичная субстанция - атомы движутся в пустоте, и их различные сочетания суть те или иные материальные образования. Уничтожение вещей, по Демокриту, означает лишь их разложение на атомы. В самом понятии атома содержится нечто общее, присущее различным телам.

Весьма важную попытку дать определение материи сделал французский материалист XVIII века Гольбах, который в работе "Система природы" писал, что "по отношению к нам материя вообще есть все то, что воздействует каким- нибудь образом на наши чувства". Здесь мы видим стремление выделить то общее в различных формах материи, а именно: что они вызывают у нас ощущения. В этом определении Гольбах уже отвлекается от конкретных свойств предметов и дает представление о материи как абстракции. Вместе с тем определение Гольбаха было ограниченным. Оно не раскрывало до конца сущности всего того , что воздействует на наши органы чувств, оно не раскрывало специфики того, что не может воздействовать на наши чувства. Эта незавершенность предложенного Гольбахом определения материи создавала возможности как для материалистической, так и идеалистической ее трактовки.

К концу прошлого века естествознание, и в частности физика, достигло достаточно высокого уровня своего развития. Были открыты общие и, казалось, незыблемые принципы строения мира. Была открыта клетка, сформулирован закон сохранения и превращения энергии, установлен Дарвиным эволюционный путь развития живой природы, Менделеевым создана периодическая система элементов. Основой бытия всех людей, предметов признавались атомы - мельчайшие, с точки зрения того времени, неделимые частицы вещества. Понятие материи отождествлялось, таким образом, с понятием вещества, масса характеризовалась как мера количества вещества или мера количества материи. Материя рассматривалась вне связи с пространством и временем. Благодаря работам Фарадея, а затем Максвелла, были установлены законы движения электромагнитного поля и электромагнитная природа света. При этом распространение электромагнитных волн связывалось с механическими колебаниями гипотетической среды - эфира. Физики с удовлетворением отмечали: наконец-то, картина мира создана, окружающие нас явления укладываются в предначертанные им рамки.

Оценивая в целом представления классической физики XIX в. о строении и свойствах материи, отметим, что они страдали теми же недостатками, что и учения древних. Точка зрения на материю как на первичную, неизменную субстанцию и отождествление ее при этом с веществом содержали в себе предпосылки возможности критических ситуаций в физике. И это не замедлило сказаться. На благополучном, казалось, фоне "стройной теории" вдруг последовала целая серия необъяснимых в рамках классической физики научных открытий. В 1896 г. были открыты рентгеновские лучи. В 1896 г. Беккерель случайно обнаружил радиоактивность урана, в этом же году супруги Кюри открывают радий. Томсоном в 1897 г. открыт электрон, а в 19О1 г. Кауфманом показана изменчивость массы электрона при его движении в электромагнитном поле. Наш соотечественник Лебедев обнаруживает световое давление, тем самым окончательно утверждая материальность электромагнитного поля. В начале ХХ в. Планком, Лоренцом, Пуанкаре и др. закладываются основы квантовой механики, и, наконец, в 19О5 г. Эйнштейном создается специальная теория относительности.

9. В самом широком смысле движение в применении к материи — это «изменение вообще», оно включает в себя все происходящие в мире изменения. Представления о движении как изменении зародились уже в древней философии и развивались по двум основным линиям — материалистической и идеалистической.

Идеалисты под движением понимают не изменения объективной реальности, а изменения чувственных представлений, идей, мыслей. Тем самым делается попытка мыслить движение без материи. В материализме подчеркивается атрибутивный характер движения по отношению к материи (его неотрывность от нее) и первичность движения материи по отношению к изменениям духа.

Движение — атрибут, неотъемлемое свойство материи, они тесно связаны и не существуют друг без друга. Однако в истории познания имели место попытки оторвать этот атрибут от материи. Так, сторонники «энергетизма» — направления в философии и естествознании, возникшего в конце XIX — начале XX в., пытались все явления природы свести к видоизменениям энергии, лишенной материальной основы, т. е. оторвать движение (а энергия — общая количественная мера различных форм движения материи) от материи. Энергия при этом трактовалась как чисто духовный феномен, и эта «духовная субстанция» провозглашалась основой всего существующего.

Сторонники концепции «тепловой смерти Вселенной» пришли к заключению, что все формы движения в природе должны будут превратиться в теплоту и равномерно рассеяться в мировом пространстве. Вследствие этого температура между всеми телами уравновесится, и движение прекратится, наступит «конец мира».

Однако данная концепция, как и «энергетизм», несовместима с законом сохранения и превращения энергии, согласно которому энергия в природе не возникает из ничего и не исчезает; она может только переходить из одной формы в другую. А потому движение неуничтожимо и неотрывно от материи.

Итак, материя тесно связана с движением, а оно существует в виде конкретных своих форм. Основными из них являются механическое, физическое, химическое, биологическое и социальное (общественное). Впервые эту классификацию предложил Ф. Энгельс, но в настоящее время она претерпела определенную конкретизацию и уточнения. Так, сегодня есть мнения о том, что самостоятельными формами движения являются геологическое, экологическое, планетарное, компьютерное и др.

10. А) Поступательным называется такое движение абсолютно твердого тела, при котором любая прямая жестко связанная с телом перемещается параллельно самой себе.

Все точки тела движущегося поступательно в каждый момент времени имеют одинаковые скорости и ускорения, а их траектории полностью совмещаются при параллельном переносе, поэтому кинематическое рассмотрение поступательного движения абсолютно твердого тела сводится к изучению движения любой его точки. В самом общем случае поступательно движущееся тело обладает тремя степенями свободы.

Б) Движение абсолютно твердого тела, при котором две его точки A и B остаются неподвижными, называется вращением, или вращательным движением вокруг неподвижной прямой AB, называемой осью вращения.

При вращении твердого тела вокруг неподвижной оси все его точки описывают окружности, центры которых лежат на оси вращения, а плоскости перпендикулярны ей. Тело, вращающееся вокруг неподвижной оси, обладает одной степенью свободы. Его положение определяется заданием угла φ поворота из некоторого начального положения.

11.  

Второй закон Ньютона — основной закон динамики поступательного движения — от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.      Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил: а ~ F  = const).(6.1)       При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно а ~ 1/т (F = const).     (6.2)    Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение—величины векторные, можем записать а = kF/m. (6.3)     Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).  В СИ коэффициент пропорциональности k= 1. Тогда                       A=F/m или  (6.4) Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:  (6.5) Векторная величина      (6.6) численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки. Подставляя (6.6) в (6.5), получим (6.7)      Это выражение — более общая формулировка второго закона Ньютона: скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки. Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе 1 кг сообщает ускорение 1 м/с2 в направлении действия силы: 1Н=1кг*м/c2      Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенст­ва нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7).

12. Основое уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

 

М = E*J или E = M/J

 

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

 

Момент инерции тонкого кольца:

13.

Ине́рция  — свойство тел сохранять покой или равномерное прямолинейное движение, если внешние воздействия на него отсутствуют или взаимно скомпенсированы.

Существование явления инерции в классической механике постулируется Первым законом Нью́тона, который также называется Зако́ном ине́рции. Его классическую формулировку дал Ньютон в своей книге «Математические начала натуральной философии»:

Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Современная формулировка закона:

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО). Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением) называются соответственно неинерциальными. Проявлением неинерциальности в них является возникновение фиктивных сил, называемых «силами инерции».

Гравитационная масса — характеристика материальной точки при анализе в классической механике, которая полагается причиной гравитационного взаимодействия тел, в отличие от инертной массы, которая определяет динамические свойства тел.

Как установлено экспериментально, эти две массы пропорциональны друг другу. Не было обнаружено никаких отклонений от этого закона, поэтому новых единиц измерения для инерционной массы не вводят (используют единицы измерения гравитационной массы) и коэффициент пропорциональности считают равным единице, что позволяет говорить и о равенствеинертной и гравитационной масс.

На равенство инертной и гравитационной масс обратил внимание ещё Ньютон, он же впервые доказал, что они отличаются не более чем на 0,1 % (иначе говоря, равны с точностью до 10−3). На сегодняшний день это равенство экспериментально проверено с очень высокой степенью точности (чувствительность к относительной разности инертной и гравитационной масс в лучшем эксперименте на 2009 год равна (0,3±1,8)·10−13)

Момент инерции — скалярная физическая величина, мера инертности во вращательном движениивокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

14. Способность к взаимодействию – важнейшее и неотъем­лемое свойство материи. Именно взаимодействия обеспе­чивают объединение различных материальных объектов мега-, макро- и микромира в системы. Все известные со­временной науке силы сводятся к четырем типам взаимо­действий, которые называются фундаментальными:

1) грави­тационное;

2) электромагнитное;

3) слабое;

4) сильное.

Гравитационное взаимодействие впервые стало объек­том изучения физики в XVII веке. Теория гравитации И. Нью­тона, основу которой составляет закон всемирного тяготе­ния, стала одной из составляющих классической механики. Закон всемирного тяготения гласит: между двумя телами существует сила притяжения, прямо пропорциональная про­изведению их масс и обратно пропорциональная квадрату расстояния между ними. Любая материальная частица является источником гравитационного воздействия и испы­тывает его на себе. По мере увеличения массы гравитаци­онные взаимодействия возрастают, т.е. чем больше масса взаимодействующих веществ, тем сильнее действуют гра­витационные силы. Силы гравитации – это силы притя­жения.

Гравитационное взаимодействие – наиболее сла­бое. Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увели­чением расстояния убывает, но не исчезает полностью. Счи­тается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. В микромире гравитационное взаимодействие не играет существенной роли, однако в макро- и особенно мегапроцессах ему при­надлежит ведущая роль.

Электромагнитное взаимодействие стало предметом изу­чения в физике XIX в. Первой единой теорией электро­магнитного поля выступила концепция Дж. Максвелла. В отличие от гравитационной силы электромагнитные вза­имодействия существуют только между заряженными час­тицами: электрическое поле – между двумя покоящимися заряженными частицами, магнитное – между двумя дви­жущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами от­талкивания. Одноименно заряженные частицы отталкива­ются, разноименно – притягиваются. Переносчиками этого типа взаимодействия являются фотоны. Электромагнитное взаимодействие проявляется в микро-, макро- и мегамире.

Слабое взаимодействие было открыто лишь XX в. Слабое взаимодействие связано с распадом частиц, поэтому его открытие последовало только вслед за откры­тием радиоактивности. При наблюдении радиоактивного распада частиц обнаружились явления, которые, казалось бы, противоречили закону сохранения энергии. Дело в том, что в процессе распада часть энергии «исчезала».

Сильное взаимодействие также было открыто только в XX в. Оно удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкива­ния. Сильное взаимодействие осуществляется на расстояниях не более чем 10-13 см и отвечает за устойчивость ядер. Ядра элементов, находящихся в конце таблицы Д.И. Менделеева, не­устойчивы, поскольку их радиус велик и, соответственно, сильное взаимодействие теряет свою интенсивность.