Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОАиП.doc
Скачиваний:
5
Добавлен:
18.09.2019
Размер:
166.91 Кб
Скачать

«Основ алгоритмизации и программирования»

Вопрос №17 Понятие об алгоритмическом языке. Логические языки. Языки низкого и высокого уровня. Компилируемые и интерпретируемые языки. Функциональные языки.

Алгоритми́ческий язык — формальный язык, используемый для записи, реализации и изучения алгоритмов. Всякий язык программирования является алгоритмическим языком, но не всякий алгоритмический язык пригоден для использования в качестве языка программирования

Существует школьный алгоритмический язык (учебный алгоритмический язык), использующий понятные школьнику слова на русском языке. В отличие от большинства языков программирования, алгоритмический язык не привязан к архитектуре компьютера, не содержит деталей, связанных с устройством машины.

Алгоритм на алгоритмическом языке в общем виде записывается в форме:

алг название алгоритма (аргументы и результаты)

дано условия применимости алгоритма

надо цель выполнения алгоритма

нач описание промежуточных величин

| последовательность команд (тело алгоритма)

кон

В записи алгоритма ключевые слова обычно подчёркивались либо выделялись полужирным шрифтом. Для выделения логических блоков применялись отступы, а парные слова начала и конца блока соединялись вертикальной чертой.

Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу (конструкцию) и определяемые ею свойства программных объектов или процесса обработки данных.

Основными понятиями в алгоритмических языках обычно являются следующие.

Имена (идентификаторы) — употpебляются для обозначения объектов пpогpаммы (пеpеменных, массивов, функций и дp.).

Опеpации. Типы операций:

  • аpифметические опеpации + , - , * , / и дp. ;

  • логические опеpации и, или, не;

  • опеpации отношения < , > , <=, >= , = , <> ;

  • опеpация сцепки (иначе, "присоединения", "конкатенации") символьных значений дpуг с другом с образованием одной длинной строки; изображается знаком "+".

Данныевеличины, обpабатываемые пpогpаммой. Имеется тpи основных вида данных: константы, пеpеменные и массивы.

  • Константы — это данные, которые зафиксированы в тексте программы и не изменяются в процессе ее выполнения.

Пpимеpы констант:

    • числовые 7.5, 12;

    • логические да (истина), нет (ложь);

    • символьные "А", "+";

    • литеpные "abcde", "информатика", "" (пустая строка).

  • Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные.

  • Массивы — последовательности однотипных элементов, число которых фиксировано и которым присвоено одно имя. Положение элемента в массиве однозначно определяется его индексами (одним, в случае одномерного массива, или несколькими, если массив многомерный). Иногда массивы называют таблицами.

Выpажения — пpедназначаются для выполнения необходимых вычислений, состоят из констант, пеpеменных, указателей функций (напpимеp, exp(x)), объединенных знаками опеpаций.

Выражения записываются в виде линейных последовательностей символов (без подстрочных и надстрочных символов, "многоэтажных" дробей и т.д.), что позволяет вводить их в компьютер, последовательно нажимая на соответствующие клавиши клавиатуры.

Различают выражения арифметические, логические и строковые.

  • Арифметические выражения служат для определения одного числового значения. Например, (1+sin(x))/2. Значение этого выражения при x=0 равно 0.5, а при x=p/2 - единице.

  • Логические выражения описывают некоторые условия, которые могут удовлетворяться или не удовлетворяться. Таким образом, логическое выражение может принимать только два значения — "истина" или "ложь" (да или нет).

  • Значения строковых (литерных) выражений — текcты. В них могут входить литерные константы, литерные переменные и литерные функции, разделенные знаком операции сцепки. Например, А + В означает присоединение строки В к концу строки А. Если А = "куст ", а В = "зеленый", то значение выражения А+В есть "куст зеленый".

Операторы (команды). Оператор — это наиболее крупное и содержательное понятие языка: каждый оператор представляет собой законченную фразу языка и определяет некоторый вполне законченный этап обработки данных. В состав опеpатоpов входят:

  • ключевые слова;

  • данные;

  • выpажения и т.д.

Операторы подpазделяются на исполняемые и неисполняемые. Неисполняемые опеpатоpы пpедназначены для описания данных и стpуктуpы пpогpаммы, а исполняемые — для выполнения pазличных действий (напpимеp, опеpатоp пpисваивания, опеpатоpы ввода и вывода, условный оператор, операторы цикла, оператор процедуры и дp.).

Язык программирования – это специальный язык, на котором пишут команды для управления компьютером. Языки программирования созданы для того, чтобы людям было проще читать и писать для компьютера, но они затем должны транслироваться (транслятором или интерпретатором) в машинный код, который только и может исполняться компьютером. Языки программирования можно разделить на языки высокого уровня и языки низкого уровня.

Язык низкого уровня – это язык программирования, предназначенный для определенного типа компьютера и отражающий его внутренний машинный код. Языки низкого уровня часто называют машинно-ориентированными языками. Их сложно конвертировать для использования на компьютерах с разными центральными процессорами, а также довольно сложно изучать, поскольку для этого требуется хорошо знать принципы внутренней работы компьютера.

Язык высокого уровня – это язык программирования, предназначенный для удовлетворения требований программиста; он не зависит от внутренних машинных кодов компьютера любого типа. Языки высокого уровня используют для решения проблем и поэтому их часто называют проблемно-ориентированными языками. Каждая команда языка высокого уровня эквивалентна нескольким командам в машинных кодах, поэтому программы, написанные на языках высокого уровня, более компактны, чем аналогичные программы в машинных кодах.

 Основные языки программирования и области их использования приведены в таблице 1.

Таблица 1

Язык

Основное использование

Описание

Ада

В обороне

Высокого уровня

Ассемблер

Работы, требующие детального контроля за аппаратным обеспечением, быстрого исполнения и программ малого размера

Быстрый и эффективный, но требующий определенных усилий и навыков

Бейсик

В образовании, бизнесе, дома

Прост в изучении

С

Системное программирование, универсальное программирование

Быстрый и эффективный, широко используется как универсальный язык

C++

В объектно-ориентированном про­граммировании

Основан на языке С

Кобол

Программирование в биз­несе

Жестко ориентирован на коммер­ческие задачи, легко научиться, но очень много операторов

Форт

Управление приложениями

Использует инверсную польскую запись

Фортран

Научная работа и вычис­ления

Основан на математических фор­мулах

Лисп

Искусственный интеллект

Язык символов с репутацией трудно изучаемого

Модула-2

Системное программирование и программирование в режиме реального времени, универсальное про­граммирование

Высоко структурирован, предназначен заменить Паскаль для приложений «реального мира»

Оберон

Универсальное програм­мирование

Небольшой, компактный язык, соединяющий многие черты Пас­каля и Модула-2

Паскаль

Универсальный язык

Высоко структурирован

Пролог

Искусственный интеллект

Символьно-логическая система программирования, в начале предназначенная для решения теорем, но сейчас использующаяся чаще для решения задач, связанных с искусственным интеллектом

Языки программирования делятся на два класса — компилируемые и интерпретируемые.

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполняемый файл, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык, понятный процессору.

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) ее текст без предварительного перевода. При этом программа остается на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера — это интерпретатор машинного кода.

Кратко говоря, компилятор переводит программу на машинный язык сразу и целиком, создавая при этом отдельную программу, а интерпретатор переводит на машинный язык прямо во время исполнения программы.

Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль, можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

Для любого интерпретируемого языка можно создать компилятор — например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

Интерпретаторы

Плюс интерпретаторов, возможность получения быстрого ответа. Здесь нет необходимости в компилировании, так как интерпретатор всегда готов для вмешательства в вашу программу.

Однако интерпретаторные языки имеют недостатки. Необходимо, например, иметь копию интерпретатора в памяти все время, тогда как многие возможности интерпретатора, а следовательно и его возможности могут не быть необходимыми для исполнения конкретной программы.

При исполнении программных операторов, интерпретатор должен сначала сканировать каждый оператор с целью прочтения его содержимого (что этот человек просит меня сделать?), а затем выполнить запрошенную операцию. Операторы в циклах сканируются излишне много.

При втором проходе цикла все это разгадывание повторяется снова, так как абсолютно забыты все результаты изучения этой строки какую-то миллисекунду тому назад.

Компиляторы

Компилятор-это транслятор текста на машинный язык, который считывает исходный текст. Он оценивает его в соответствии с синтаксической конструкцией языка и переводит на машинный язык. Другими словами, компилятор не исполняет программы, он их строит. Интерпретаторы невозможно отделить от программ, которые ими прогоняются. Большинство программ будут прогоняться в четыре - десять раз быстрее их интерпретаторных эквивалентов. Расходующая большую часть времени на работу с файлами на дисках или ожидание ввода, компиляторы не могут продемонстрировать какое-то впечатляющее увеличение скорости.

По мере развития вычислительной техники, компьютерное время удешевляется, поэтому особую важность приобретает вопрос "Как описывать вычисления на языке более близком человеку, чем компьютеру?". На этот вопрос призваны ответить универсальные функциональные языки программирования, программы на которых гораздо больше напоминают изначальную спецификацию задачи, чем программы, написанные с помощью императивных языков программирования.

Программы на функциональных языках обычно намного короче и проще, чем те же самые программы на императивных языках. качестве основных свойств функциональных языков программирования обычно рассматриваются следующие:

  • краткость и простота;

Программы на функциональных языках обычно намного короче и проще, чем те же самые программы на императивных языках.

  • строгая типизация;

В функциональных языках большая часть ошибок может быть исправлена на стадии компиляции, поэтому стадия отладки и общее время разработки программ сокращаются. Вдобавок к этому строгая типизация позволяет компилятору генерировать более эффективный код и тем самым ускорять выполнение программ.

  • модульность;

Механизм модульности позволяет разделять программы на несколько сравнительно независимых частей (модулей) с чётко определёнными связями между ними. Тем самым облегчается процесс проектирования и последующей поддержки больших программных систем. Поддержка модульности не является свойством именно функциональных языков программирования, однако поддерживается большинством таких языков.

  • функции — объекты вычисления;

В функциональных языках (равно как и вообще в языках программирования и математике) функции могут быть переданы другим функциям в качестве аргумента или возвращены в качестве результата. Функции, принимающие функциональные аргументы, называются функциями высших порядков или функционалами.

  • чистота (отсутствие побочных эффектов);

В чистом функциональном программировании оператор присваивания отсутствует, объекты нельзя изменять и уничтожать, можно только создавать новые путем декомпозиции и синтеза существующих. О ненужных объектах позаботится встроенный в язык сборщик мусора. Благодаря этому в чистых функциональных языках все функции свободны от побочных эффектов.

  • отложенные (ленивые) вычисления.

В традиционных языках программирования (например, C++) вызов функции приводит к вычислению всех аргументов. Этот метод вызова функции называется вызов-по-значению. Если какой-либо аргумент не использовался в функции, то результат вычислений пропадает, следовательно, вычисления были произведены впустую. В каком-то смысле противоположностью вызова-по-значению является вызов-по-необходимости (ленивые вычисления). В этом случае аргумент вычисляется, только если он нужен для вычисления результата.

Некоторые языки функционального программирования

  • Лисп

  • Miranda

  • Haskell