Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика-основной вариант.docx
Скачиваний:
27
Добавлен:
16.09.2019
Размер:
1.19 Mб
Скачать

2 Изобарный процесс

График изобарического расширения газа от объёма   до  . AB здесь является изобарой.

изобарный процесс (др.-греч. ἴσος «одинаковый» и βάρος «тяжесть») — термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа.

Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе  .

Работа, совершаемая газом при расширении или сжатии газа, равна  .

Количество теплоты, получаемое или отдаваемое газом, характеризуется изменением энтальпии:  .

Теплоёмкость

Молярная теплоёмкость при постоянном давлении обозначается как  . В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера  .

Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной:

  • для одноатомных газов  , то есть около 20.8 Дж/(моль·К);

  • для двухатомных газов  , то есть около 29.1 Дж/(моль·К);

  • для многоатомных газов  , то есть около 33.3 Дж/(моль·К).

Теплоёмкости можно также определить исходя из уравнения Майера, если известен показатель адиабаты, который можно измерить экспериментально (например, с помощью измерения скорости звука в газе или используя метод Клемана — Дезорма).]Изменение энтропии

Изменение энтропии при квазистатическом изобарном процессе равно  . В случае, если изобарный процесс происходит в идеальном газе, то  , следовательно, изменение энтропии можно выразить как  . Если пренебречь зависимостью   от температуры, то  .

3. Изохорный процесс

Изохорический или изохорный процесс (от др.-греч. ἴσος «равный» и χώρος «место») —термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см.Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры. Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: T (температура), V (объем) и P (давление).

Термодинамика процесса

Из определения работы следует, что изменение работы при изохорном процессе равно:

Чтобы определить полную работу процесса проинтегрируем данное выражение. Поскольку объем неизменен, то:

,

Но такой интеграл равен нулю. Итак, при изохорном процессе газ работы не совершает:

.

Графически доказать это намного проще. С математической точки зрения, работа процесса — это площадь под графиком. Но график изохорного процесса является перпендикуляром к оси абсцисс. Таким образом, площадь под ним равна нулю.

Изменение внутренней энергии идеального газа можно найти по формуле:

,

где i — число степеней свободы, которое зависит от количества атомов в молекуле (3 для одноатомной (например, неон), 5 для двухатомной (например, кислород) и 6 для трёхатомной и более (например, молекула водяного пара)).

Из определения и формулы теплоёмкости и, формулу для внутренней энергии можно переписать в виде:

где   — молярная теплоёмкость при постоянном объёме.

Используя первое начало термодинамики можно найти количество теплоты при изохорном процессе:

Но при изохорном процессе газ не выполняет работу. То есть, имеет место равенство:

то есть вся теплота, которую получает газ идёт на изменение его внутренней энергии.

Энтропия при изохорном процессе

Поскольку в системе при изохорном процессе происходит теплообмен с внешней средой, то происходит изменение энтропии. Из определения энтропии следует:

Выше была выведена формула для определения количества теплоты. Перепишем ее в дифференциальном виде:

где ν — количество вещества,   — молярная теплоемкостью при постоянном объеме. Итак, микроскопическое изменение энтропии при изохорном процессе можно определить по формуле:

Или, если проинтегрировать последнее выражение, полное изменение энтропии в этом процессе:

В данном случае выносить выражение молярной теплоемкости при постоянном объеме за знак интеграла нельзя, поскольку она является функцией, которая зависит от температуры.

Билет № 25

Насыщенные и ненасыщенные пары

Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Пары́ прочих веществ оговариваются в явном виде.

Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава.

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсацияили десублимация.

Ненасыщенный пар — пар, не достигший термодинамического равновесия со своей жидкостью. При данной температуре давлениененасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.

Иванченко

Билет №23 - Кристаллические и амфорные тела.

Твёрдые тела находятся преимущественно в кристаллическом состоянии. Кристаллы

- это твёрдые тела, атомы и молекулы которых занимают определённые,

упорядоченные положения в пространстве. Кристаллы имеют плоские грани и

правильную внешнюю форму. Физические свойства кристалла зависят от выбранного

в нём направления, например, кусок слюды в одном направлении можно легко

разорвать на тонкие пластинки, но разорвать его по направлению,

перпендикулярному пластинкам, значительно сложнее. Это объясняется строением

его кристаллической решётки. Зависимость физических свойств от направления

внутри кристалла называют анизотропией. Все кристаллы анизотропные. Твёрдое

тело, состоящее из большого числа маленьких кристалликов называют

поликристаллическим. В поликристаллических телах все направления равноправны

и их свойства по всем направлениям одинаковы, но в каждом из маленьких

кристалликов анизотропия проявляется. Одиночные кристаллы называются

монокристаллами. Примером монокристалла служит крупинка соли, а поликристалла

- металлы, кусок сахара. Кроме кристаллической твёрдые тела имеют ещё и

амфорную форму. У амфорных тел нет строгого порядка в расположении частиц.

Только ближайшие атомы-соседи располагаются в строгом порядке. Свойства: 1)

Все амфорные тела изотропны, то есть их свойства одинаковы по всем

направлениям. 2) При внешних воздействиях амфорные тела обнаруживают

одновременно другие свойства как твёрдые тела и текучесть как жидкости. 3)

При низких температурах амфорные тела напоминают твёрдые тела по своим

свойствам, а при повышении температуры их свойства их свойства всё более и

более приближаются к свойствам жидкости. Определённой температуры плавления у

амфорных тел нет. Например стекло, смола. Понимание структуры амфорных и

кристаллических тел позволяет создавать материалы с заданными свойствами.

Жидкие металлы

Жидкие металлы, непрозрачные жидкости с характерным блеском, обладающие большой теплопроводностью, электропроводностью и др. особенностями, свойственными твёрдым металлам.Ж. м. являются все расплавленные металлы и сплавы металлов, а также ряд интерметаллических соединений. Некоторые полуметаллы и полупроводники в жидком состоянии превращаются в типичные металлы: одни — сразу после плавления (Ge, Si, GaSb и др.), другие — при нагревании выше температуры плавления (Te — Se, PbTe, PbSe, ZnSb и др.). Некоторые неметаллы (Р, С, В) становятся Ж. м. при высоких давлениях. При атмосферном давлении и комнатной температуре в жидком состоянии находится лишь ртуть (температура плавления — 38,9°С).

Ж. м. по таким свойствам, как вязкость, поверхностное натяжение и диффузия, сходны с др. жидкостями, но в то же время резко отличаются от них значительно большей теплопроводностью, электропроводностью, способностью отражать электромагнитные волны, а также меньшей сжимаемостью. По этим особенностям Ж. м. близки к твёрдым металлам.

Электропроводность Ж. м., как и твёрдых металлов, является электронной. Для чистых металлов электропроводность при плавлении уменьшается в 1,5—3 раза в зависимости от рода металла и при дальнейшем нагревании убывает линейно с температурой. Исключение составляют двухвалентные Ж. м. — их электропроводность при повышении температуры слегка падает и проходит через минимум. Коэффициент термоэдс (см. Термоэлектрические явления) скачком меняется при Ж. м. является линейной функцией температуры (для многих Ж. м. он пропорционален абсолютной температуре). Коэффициент Холла R(cм. Холла эффект) при плавлении меняется; для Ж. м. он отрицателен и может быть вычислен с помощью модели свободных электронов по формуле RH = (ne)-1 где n — электронная плотность (вычисленная по плотности и валентности), е — заряд электрона (из этих общих правил имеются исключения). Электрические свойства Ж. м. могут быть поняты только на основе строгой квантовомеханической теории кинетических электронных процессов в жидкостях, однако разработка такой теории пока только начата.

При плавлении металлов теплопроводность изменяется почти так же как электропроводность. Это справедливо также и для Bi, теплопроводность и электропроводность которого при плавлении увеличиваются, а не уменьшаются, как у др. металлов. Свободные электроны переносят большую часть теплового потока; поэтому Ж. м. имеют более высокую теплопроводность, чем жидкие диэлектрики. Некоторые Ж. м. соединяют значительную теплопроводность с высокой теплоёмкостью.Это позволяет использовать Ж. м. в теплотехнике в качестве теплоносителей.Наиболее подробно изучены одноатомные Ж. м. — натрий и калий. Они обладают достаточно низкими точками плавления и применяются либо отдельно, либо в виде сплавов для отвода теплоты в ядерных реакторах.

Ж. м., так же как и твёрдые металлы, мало сжимаемы (значительно хуже, чем др. жидкости), т. к. для уменьшения объёма в обоих случаях нужно сконцентрировать электроны в меньшем объёме. Поэтому скорость звука в Ж. м. обычно выше, чем в др. жидкостях. Ж. м., как и др. жидкости, неспособны оказывать сопротивление статическим сдвигам, однако ультразвуковые волны очень высокой частоты могут распространяться в Ж. м. как сдвиговые возмущения (см. Жидкость).

Внешнее механическое воздействие на тело вызывает смещение атомов из равновесных положений и приводит к изменению формы и объема тела, т. е. к его деформации. Самые простые виды деформации — растяжение и сжатие. Растяжение испытывают тросы подъемных кранов, канатных дорог, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются стены и фундаменты зданий. Изгиб испытывают балки перекрытий в зданиях, мостах. Деформация изгиба сводится к деформациям сжатия и растяжения, различным в разных частях тела.

Деформация и напряжение. Деформацию сжатия и растяжения можно характеризовать абсолютным удлинением Δl , равным разности длин образца до растяжения l0 и после него l :

.

Абсолютное удлинение   при растяжении положительно, при сжатии имеет отрицательное значение.

   Отношение абсолютного удлинения   к длине образца   называется относительным удлинением  :

. (30.1)

При деформации тела возникают силы упругости. Физическая величина, равная отношению модуля силы упругости к площади сечения тела, называется механическим напряжением  :

. (30.2)

За единицу механического напряжения в СИ принят паскалъ (Па).  .

Модуль упругости. При малых деформациях напряжение прямо пропорционально относительному удлинению:

. (30.3)

Коэффициент пропорциональности Е в уравнении (30.3) называется модулем упругости. Модуль упругости одинаков для образцов любой формы и размеров, изготовленных из одного материала:

. (30.4)

Из формулы (30.4) следует, что

. (30.5)

Сравнив выражение (30.5) с законом Гука, получим, что жесткость k стержня пропорциональна произведению модуля Юнга на площадь поперечного сечения стержня и обратно пропорциональна его длине.

Диаграмма растяжения. Зависимость напряжения   от относительного удлинения   является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси ординат откладывается механическое напряжение  , по оси абсцисс — относительное удлинение   (рис. 102).

Закон Гука выполняется при небольших деформациях. Максимальное напряжение  , при котором еще выполняется закон Гука, называетсяпределом пропорциональности. За пределом пропорциональности (точка А) напряжение перестает быть пропорциональным относительному удлинению; до некоторого напряжения после снятия нагрузки размеры тела восстанавливаются полностью. Такая деформация называется упругой.Максимальное напряжение  , при котором деформация еще остается упругой, называется пределом упругости (точка В). Большинство металлов испытывает упругую деформацию до значений  .

   При напряжениях, превышающих предел упругости  , образец после снятия нагрузки не восстанавливает свою форму или первоначальные размеры. Такие деформации называются остаточными или пластическими.

   В области пластической деформации (участок CD) деформация происходит почти без увеличения напряжения. Это явление называется текучестью материала.

   Материалы, у котерых область текучести CD значительна, могут без разрушения выдерживать большие деформации. Если же область текучести материала почти отсутствует, он без разрушения сможет выдержать лишь небольшие деформации. Такие материалы называются хрупкими. Примерами хрупких материалов могут служить стекло, кирпич, бетон, чугун.

   За пределом текучести кривая напряжений поднимается и достигает максимума в точке Е. Напряжение, соответствующее точке Е, называетсяпределом прочности  . После точки Е кривая идет вниз и дальнейшая деформация вплоть до разрыва (точка К) происходит при все меньшем напряжении.

Дефекты в кристаллах. Способы повышения прочности твердых тел. Кристаллическими телами являются все металлические изделия — стальные каркасы зданий и мостов, рельсы железных дорог, линии электропередач, станки, машины, поезда, самолеты.

   Одной из важнейших задач науки и техники является создание прочных и надежных машин, станков и зданий с минимальной затратой металлов и других материалов.

   Сравнение реальной прочности кристаллов со значениями, полученными на основании теоретических расчетов, обнаруживает весьма существенные расхождения. Теоретический предел прочности в десятки и даже в сотни раз превосходит значения, получаемые при испытаниях реальных образцов.

   Оказалось, что причина расхождения теории и эксперимента заключается в наличии внутренних и поверхностных дефектов в строении кристаллических решеток.

   Самые простые дефекты в идеальной кристаллической решетке — точечные дефекты — возникают при замещении собственного атома чужеродным, внедрении атома в пространство между узлами решетки или при отсутствии атома в одном из узлов кристаллической решетки (рис. 103).

Другой вид дефектов — линейные дефекты — возникает при нарушениях в порядке расположения атомных плоскостей в кристаллах. Пример такого нарушения в структуре кристалла представлен на рисунке 104.

Деформация и разрушение кристалла с линейным дефектом облегчаются потому, что вместо одновременного разрыва всех связей между атомами двух плоскостей становится возможным поочередный разрыв небольшого числа связей между атомами с постепенным перемещением дефекта в кристалле.

   Для получения кристаллических материалов с высокой прочностью нужно выращивать монокристаллы без дефектов. Это очень сложная задача, и поэтому в практике этот путь пока широкого распространения не получил.

   Большинство современных методов упрочнения материалов основано на другом способе. Для упрочнения кристалла с дефектами в решетке можно создать условия, при которых перемещение дефектов в кристалле затрудняется. Препятствием для перемещения дефектов в кристалле могут служить другие дефекты, специально созданные в кристаллической решетке. Так, для увеличения прочности стали применяется легирование стали — введение в расплав небольших добавок хрома, вольфрама и других элементов. Внедрение атомов чужеродных элементов в решетку кристаллов железа затрудняет перемещение линейных дефектов при деформации кристаллов, прочность стали повышается при этом примерно в три раза. Дополнительные дефекты в кристаллической решетке создаются при протяжке, дробеструйной обработке металлов. Эти виды обработки могут повышать прочность материалов примерно в два раза.

Строение твердого тела

Всякое вещество состоит из большого числа мельчайших частичек — молекул. Каждая молекула, в свою очередь, состоит из сравнительно небольшого числа атомов. По взаимному расположению атомов или молекул твердые тела подразделяют на кристаллические и аморфные.

Кристаллическими называются тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными (стеклообразными) — тела, в которых атомы и молекулы расположены беспорядочно.

При переходе вещества из жидкого состояния в твердое (например, при застывании расплава металла) или при выпадении твердого вещества в осадок из насыщенного раствора (например, при твердении гипсового вяжущего) атомы и молекулы вещества стремятся занять такое положение относительно друг друга, чтобы силы их взаимодействия оказались максимально уравновешены. Поэтому их положение относительно друг друга оказывается вполне определенным, фиксированным. Такой геометрически правильный и повторяющийся в пространстве порядок расположения атомов (молекул) называют кристаллической решеткой (рис. 1).

Процесс кристаллизации не совершается мгновенно, а требует определенного времени. В некоторых случаях, например при быстром охлаждении расплавленного кварца, может произойти затвердевание без кристаллизации с сохранением хаотического расположения атомов. Так образуется аморфное вещество — в нашем случае кварцевое стекло.

Рис. 1. Схематическое изображение кристаллических решеток алмаза (а) и графита (б)

Различие в строении кристаллических и аморфных веществ определяет и различие в их свойствах. Так, аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава. Например, расплав доменного шлака, используемый для получения шлаковых цементов, охлаждают по специальному ускоренному режиму для получения гранулированного шлака стеклообразного строения, обладающего повышенной химической активностью. Аморфное (стеклообразное) строение имеют также горные породы, применяемые в качестве активных минеральных добавок к цементам (туфы, пемзы, диатомиты, трепелы).

Другое существенное различие между аморфными и кристаллическими веществами состоит в в том, что кристаллические вещества при нагревании до определенной температуры (температуры плавления) плавятся, а аморфные размягчаются и постепенно переходят в жидкое состояние.

Прочность аморфных веществ, как правило, ниже прочности кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию стекол, например, при получении ситаллов и шлакоси- таллов — новых стеклокристаллических материалов.

Различные свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они кристаллизуются в разных кристаллических формах. Иллюстрацией этому служат две кристаллические формы углерода: алмаз и графит. Резкое отличие в их свойствах связано с различным строением кристаллов: атомы алмаза имеют плотнейшую тетраэдрическую решетку (рис. 1, а), а атомы графита расположены как бы слоями, причем расстояние между слоями больше, чем между соседними атомами в слоях (рис. 1,6). Такое строение графита придает ему мягкость и способность расслаиваться.

Изменением свойств материала путем изменения его кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске).

Не меньшее влияние на свойства материала оказывают его микро- и макроструктура. Микроструктура — строение материала, видимое под микроскопом, макроструктура — строение материала, видимое невооруженным глазом или при небольшом увеличении. Большинство материалов в своем составе, кроме твердого вещества, имеют воздушные включения — поры размером от долей миллиметра до сантиметра. Количество, размер и характер пор во многом определяют свойства материала. Например, пористое стекло (пеностекло) в отличие от обычного непрозрачное и очень легкое.

Форма и размер частиц твердого вещества, из которого состоит материал, также влияют на свойства материала. Так, если обычное стекло расплавить и из расплава вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата. В зависимости от формы и размера частиц и их строения различают зернистые, волокнистые и слоистые материалы.

Зернистые материалы бывают рыхлыми, состоящими из отдельных не связанных одно с другим зерен (песок, гравий), или конгломератного строения (зерна прочно соединены между собой). Пример природного материала конгломератного строения — гранит, который состоит из зерен различных минералов, прочно сросшихся друг с другом.

Искусственный материал конгломератного строения — строительный раствор, в котором зерна песка прочно соединены цементным камнем.

Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами в различных направлениях. Это явление называется анизотропией, а материалы, обладающие такими свойствами,— анизотропными. Пример анизотропного материала волокнистого строения — древесина. Она набухает поперек волокон в 10…15 раз больше, чем вдоль, а прочность древесины по разным направлениям совершенно различна.

Капырин Н.