Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
all ГОС(інформатика).doc
Скачиваний:
13
Добавлен:
15.09.2019
Размер:
900.61 Кб
Скачать
  1. Інформація і повідомлення. Поняття інформації. Властивості інформації. Поняття шуму. Способи подання повідомлень. Види повідомлень. Неперервні і дискретні повідомлення. Оцінювання і вимірювання інформації.

Поняття інф-ції є інтуїтивним та невизначеним, яке можна пояснити синонімами дані, повідом Інформація – це відомості про навколишній світ і процеси, що відбуваються у ньому. Інф-цію передають за допомогою повідом, а повідом за допомогою послідовності сигналів. Повідомлення – це різні форми подання будь – якої інформації. Тобто це інформація, виражена за доп. літер, чисел, матем символів. За допомогою одного і того ж повідом можна передати різну інф-цію і за допомогою різних повідом можна передати одну і ту ж саму ін форм-цію. Повідомлення подають певною мовою. Повідомлення може мати вигляд певної послідовності знаків, жестів, живописного, музичного твору, звукозапису, відеозапису і кінофільму. Способи подання повідом.: усно, письмово, за допомогою звуку, графіків, комбінованим методом.

Інформація може перетворюватись в шум і навпаки. Якщо повідомлення не несе корисної інформації, то воно несе шум.

Повідомлення зберігаються на носіях. Носій – це фізичне середовище, в якому зберігається повідомлення. Є дві групи носіїв: довгоіснуючі( книги, папіруси, газети, дискети) і недовгоіснуючі( звукова хвиля, радіохвилі).

Види інформації: текстова(яка міститься в друкованій літературі), звукова(усне мовлення, музика), графічна(картини, схеми), чисельна(набори числових даних), керуюча(вказівки, команди).Властивості інф.: вірогідність (воно не суперечить дійсності, правильно її пояснює і підтверджується нею) об’єктивність, повнота інф.( якщо його достатньо для виведення прав. висновків і прийняття прав. рішень), адекватність, доступність, актуальність. Не можна говорити про вимірювання інф., а можна лише говорити про місце на носії, що займає певне повідомлення. Одиниці обсягу запам’ятовуючих пристроїв прийнято називати словами біт байт, Кб, Мб, Гб, Тб тощо і за їх допомогою порівнювати, який обсяг в запам’ятовуючих пристроях займають повідом.

Мінімальною одиницею виміру обсягу повідомлення є 1bit.За допомогою одного bit можна закодувати 1 символ. В одному і тому самому за обсягом запам пристрої можуть зберігатися різні за типом повідомлення.

Щоб повідомлення можна було обробити за доп. електронної апаратури, його перетворюють в електричний сигнал. Сигнали бувають неперервними (аналоговими) або дискретними (імпульсивними). Аналоговий сигнал – це сигнал, що неперервно змінюється за амплітудою і в часі (електричний сигнал від мікрофона, напруга живлення в електромережі, сигнал, підведений до звукових колонок, звукозапис, радіо). Дискретні – описуються функціями, що у певний момент часу змінюються стрибкоподібно, тобто це сигнали, що мають обмежені часові межі (напр., обчисл процеси у компютерах). Майже всі сигнали, що обробляються комп’ютером є дискретними. Напр, при натисканні клавіш на клавіатурі формуюються дискретні сигнали, які надходять у комп’ютер. Сигнали, якими комп обмінюється з ін. пристроями (принтер, сканер), також є дискретними. Музика, яку ми слухаємо, передається за доп аналогових сигналів, але якщо її записати нотами – то за доп дискр. Сигналів, оск всі ноти можна пронумерувати за доп дискретної множини чисел. Непер повідом – це повід, що склад з непер сигналів, а дискретні – це повід, що склад з окремих значень.

  1. Інформаційні процеси. Поняття про інформаційні процеси. Носії повідомлень. Форми та засоби передавання повідомлень. Опрацювання повідомлень. Кодування повідомлень. Кодування повідомлень у двійковому алфавіті. Універсальність двійкового кодування. Інформаційна діяльність людини. Інформаційні ресурси. Захист даних.

Діяльність людини тісно пов з інф процесами. Приклади:записув. дом завд у зошит, прослуховування радіопередачі, пошук телепрограми у газеті, робота за комп.

Інформаційні процеси – це обмін повідом між людьми живою та не живою природою тощо: пошук (поцес відшукання в пошуковому масиві таких записів, що відповідають ознакам, зазначеним в інформаційному запиті за доп різних способів, різними шляхами і з різних джерел. С-ми, за доп яких зд-ся пошук інф-ції, наз. інформ.-пошуковими) , збирання(занесення інформації у відповідні бази даних. Якщо необх виконати автоматиз збір, викор. АСУ), зберігання (для того, що інф. стала на дбанням багатьох людей, збер її різними способами), опрацювання (поняття вхідної і вих. Інформ.), використання, передавання(точне чи наближене відтворення інф., отриманої в іншому місці за доп. прожектори, сигнальні лампи, листи, повідомлення голосом, радіо. Поняття джерела інф, носія і одержувача), захист інформації (забезпеч. неможливості доступу до інф-ції сторонніх осіб; незумисного або недозволеного використ., зміни чи руйнування інф-ції. Захист інф слід здійснювати у кількох напрямках:1)Захист від випадк чинників, неправ. дій користувача, виходу з ладу апаратури),2) захист від злочинних дій, що пол. У розкритті конфеденц. Інфи, несанкц. доступі до інформ. Ці завд викон служби безпеки, які забезп цілісність та надійність даних, засекречування даних, контроль доступу і захист від збоїв апаратури. Шляхи і методи приховування таємних повідомлень відомі вже давно і до того ж давня сфера людської діяльності стінографія відродилася саме для вирішення проблем захисту інформації.

Поряд з нею використовуються й інші методи захисту: кодування і криптографії. Мета криптографії полягає у тому щоб заблокувати доступ до таємної інформації шляхом шифрування змісту таємних повідомлень. Мета ж стінографії - приховати сам факт існування таємного повідомлення. При об’єднані цих двох методів, ймовірність захисту інформації була б набагато збільшена. Але це покищо у переспективі. Існують такі методи захисту інформації:

Метод спеціального форматування текстових данних

Метод використання відомого переміщення слів, абзаців(основан на зміні положення строк і розташування слів)

Метод вибору певних позиційних літер (початкові літери кожної строки утворюють повідомлення)

Метод приховування в невикористаних місцях жорстких дисків (записування інф. В нульовій дорожці)

Метод використування імітуючих функцій (необхідно переосмислити текст, в якому генерується повідомлення)

Метод знищення заголовка, який індифікує файл(метод кодування текста із знищеним заголовком, який відомий опоненту)

Метод використання надлишку цифрових фото, звуку, відео. (заповнення додатковою інф. молодші ряди цифрових відліків, що мають мало корисної інф).

Кодування – спосіб зберігання і передавання повідомлень, форма подання їх на носієві.

Кодування – це відображення дискретного повідомлення у вигляді певних сполучень символів( дискретне пов. – має скінченну кількість сигналів. Пр.:читання книги або іншого тексту).Сукупність правил, за якими виконується кодування, наз кодом. Завдяки кодуванню комп може обробляти різну інфу: числову, текстову, граф, звукову, відео. Всім цим видам інфи після кодування надається вигляд послідовності електор імпульсів, у якій наявність імпульсу позначаються одиницею, а його відсутність – нулем. Кожне пов. містить певну кількість інф. Двійкове код-ня - код-ня за доп двійкової с-ми зчислення: чисел 0 і 1. Метод перетворення чисел з однієї с-ми в іншу – ділення на основу, напр..Для пов., що складається з двійкових чисел, кількість інф. дорівнює кількості бітів у цьому повідомленні. Припустимо, що дискретне повідомлення являє собою послідовність 01001010001000111010. У ній є 20 двійкових розрядів і відповідно кількість інформації у повідомленні дорівнює 20 бітам. Тобто кількість інформації в двійкому коді дорівнює загальній кількості символів 0 і 1. Для подання та оправ повідом у комп використ двійкові коди, що подаються за допомог лише двох символів 0 і 1, оскільки пристрої комп побудовані на елементах, що мають два стійкі стани (які познач через 0 і 1).це дозвол технічно реалізовувати збереження і опрацювання повідом за допомогою комп. Наприклад, коли користувач вводить з клавіатури десяткові числа, вони відразу перетворюються в двійкові числа (це процес кодування).

Біт – найменша довжина двійкового коду (один двійковий розряд) Байт – це послідовність з 8 бітів. Загальна к-ть різних комбінат двійкових розрядів у байті дорівн 28=256. для кодування різних символів та для їх зберігання в запам’ятовуючих пристроях комп найчастіше використовують американський стандартний код для обміну інф-цією – ASCII, який являє собою стандартну таблицю кодування знаків.

Над цими числами комп. виконує необхідні арифметичні операції. Отриманий результат може бути винесений на екран монітора або принтер. Щоб користувач зміг зрозуміти виведену інф., числа мають бути знову подані в десятковій системі(процес декодування). Зазначимо, що максимальне число, яке може опрацювати комп, визначається розрядністю процесора(32- та 64-розрядні). Отже, переваги двйкового кодуванян полягають в тому, що використовуємо тільки два знаки (0 і 1).

Інформ діяльність людини – всі дії, що людин виконує з інформацією. Далі див інформац процеси зверху, які людина виконує. Інформац ресурси – ресурси, з яких людина здобуває різну інфу: книжки, довідкові видання, Інтернет.

Носій — фізичне середовище, в якому зберігаються повідомлення. Прикладами носіїв для тривалого зберігання повідомлень можуть бути: камінь, дерев'яна чи металева поверхня, папір, фото- і кіноплівка, магнітна, аудіо та відеоплівка, магнітні та оптичні диски тощо. Носії інф-ції:

  • довготривалі (для зберігання) – рукописні, друковані, машинні, спеціальні.

  • Недовготривалі (для передавання) хвилі різної природи, речовина в різному стані.

Особливе значення має подання повідомлень на довгоіснуючих носіях. Таке подання називають письмом: листи і газети, магнітні плівки і диски, світловідбиваючі поверхні (лазерні диски), електронні схеми та інші пристрої. Прикладами повідом на недовгоіснуюч носіях є повідом, що передаються телефоном, жестами. Носії інформації можна розрізняти не тільки за матеріалом, із якого вони виготовлені, а й за способом їх виготовлення (наприклад, рукописні, машинописні), за специфікою призначення (мікрофотокопії, креслення, книги для сліпих, надруковані шрифтом Брайля).

  1. Засоби обчислювальної техніки та історія їх розвитку. Історія розвитку обчислювальної техніки. Характеристика різних поколінь комп’ютерної техніки. Класифікація комп’ютерної техніки. Основні характеристики персонального комп’ютера.

Перші спроби створення інструментів для обробки інф-ції пов’язані з прагненням спростити і прискорити виконання дій над числами.

5 ст до н.е. – Абак (рахівниця) – пристрій для здійснення повсякденних розрахунків, застосовували в Єгипті Греції, Римі. Абак також називають римською рахівницею. Це кістяні, камяні чи бронзові дошки із заглибленнями-смугами, у яких містилися кісточки або камені. Лічба здійснювалася пересуванням кісточок.

16-17ст – з’явилися рахівниці в Росії

Історія обчислювальної техніки починається з винаходу в XVII ст. арифметичної машини. В основі ідея виконання розрахунків за доп. шестерень. Автором цього винаходу був видатний французький учений Блез Паскаль. Майже одночасно з Паскалем сконструював лічильну машину великий німецький математик Готфрід Лейбніц. У 1833р. англійський учений Чарльз Бебідж розробив проект “ аналітичної машини”, якою мала управляти програма. Вона стала прообразом майбутніх комп’ютерів. Здійснити свій проект Бебіджу не вдалося через недостатній розвиток техніки. Лише 100 років потому машина Бебіджа привернула увагу інженерів. Наприкінці 30-х років XX століття німецький інженер Конрад Цузе розробив першу двійкову цифрову машину на електромеханічних реле (механічних перемикачах, що приводяться в дію електричним струмом). Подальший стрімкий розвиток обчислювальної техніки зв’язаний зі створенням ЕОМ.

Перше покоління ЕОМ(40-ві роки XXстоліття). У машинах цього покоління використовувались електронно – вакуумні лампи як основні елементи електронних схем. Лампи в основному замінили електромеханічні реле, тому швидкодія ЕОМ значно зросла.Перша потужна ЕОМ такого роду була створена в США., але її серйозним недоліком було те, що програма, яка виконувалась, не зберігалась в пам’яті комп’ютера. Цей недолік було усунуто в 1945 р. відомим математиком фон Нейманом.Характерними рисами ЕОМ першого покоління є застосування електронних ламп у цифрових схемах, великі габарити, а також трудомісткий процес програмування.

Друге покоління ЕОМ. В середині 50-х рр. ЕОМ почали переводити на напівпровідники. Найпоширенішими машинами цього покоління були “Еліот” (Англія), “Сіменс”(ФРН), “Стретч”(США). У СРСР були розроблені і широко використовувалися “Раздан – 2”, серія машин “Минск”, “Урал”, “Мир”. Найдосконалішою машиною цього покоління була БЭСМ – 6, що виконувала понад 1 млн операцій за секунду. ЕОМ другого покоління вирізняються застосуванням напівпровідникових елементів і використанням алгоритмічних мов програмування.

Третє покоління ЕОМ. Наприкінці 60 – х рр. У пристроях ЕОМ напівпровідникові прилади були замінені на інтегральні схеми. Інтегральна схема – це невелика пластинка кристалу кремнію, на якій розміщаються сотні йтисячі транзисторів, діодів, конденсаторів тощо.Швидкодія ЕОМ зросла до 10 млн операцій за секунду. Характерними рисами ЕОМ третього покоління є застосування інтегральних схем і можливість використання розвинутих мов програмування (мов високого рівня).

Четверте покоління ЕОМ. В основі ЕОМ цього покоління лежать великі інтегральні схеми (BIC). З’явились однокристальні процесори, які згодом стали називати мікропроцесорами. Перший мікропроцесор був створений у США в 1971 р. (компанія Intel). Мікропроцесори спричинили появу міні – ЕОМ, а потім і ПК. ЕОМ 4 – го покоління характеризуються застосуванням мікропроцесорів, побудованих на великих інтегральних схемах.

П’яте покоління ЕОМ. Починаючи із середини 90 – х рр. У потужних комп’ютерах починають застосовуватися BIC супермасштабу. Гадають, що обчислювальними машинами 5 – го покоління можна буде легко керувати – користувач зможе просто голосом подавати машині команди. Характерною рисою комп. 5 – го покоління має бути використання штучногоінтелекту і природних мов спілкування.

Номенклатура видів комп'ютерів на сьогодні величезна: машини розрізняються за призначенням, потужністю, розмірами, елементною базою і т.д. Проте будь-яка класифікація є певною мірою умовна, оскільки розвиток комп'ютерної науки і техніки настільки стрімкий, що сьогоднішня мікро-ЕОМ не поступається за потужністю міні-ЕОМ п'ятирічної давності. Класифікація за призначенням: великі ЕОМ (Застосовують для обслуговування великих галузей народного господарства, характеризуються 64-розрядними паралельно працюючими процесорами, до десятків мільярдів операцій за секунду, багатокористувацьким режимом роботи(фірма IBM)потрібен обч. центр,міні ЕОМ (Подібна до великих ЕОМ, але менших розмірів. Використовують у великих підприємствах. Характеризуються мультипроцесорною архітектурою, підключенням до 200 терміналів, дисковими запам'ятовуючими пристроями, що нарощуються до сотень гігабайт, обч центр),мікро ЕОМ (Доступні багатьом установам,для обслуговування достатньо обч лабораторії у складі декількох чоловік.Необхідні системні програми купуються разом з мікроЕОМ, розробку прикладних програм замовляють у великих обчислювальних. ПК(призначений для обслуговування одного робочого місця і спроможний задовольнити потреби малих підприємств та окремих осіб. З появою Інтернету популярність зросла значно вище, оскільки за доп ПК можна користуватись науковою, довідковою, учбовою та розважальною інформацією.). Класифікація за розміром: настільні; портативні;кишенькові.

Основні хар-ки ПК. Принципи роботи комп’ютера: принцип програмного управління, принцип адресності.Принцип адресності полягає в тому, що дані та програми знаходяться на окремих полях простору для зберігання кодів повідомлень (комірках, регістрах) в ОЗП. Кожне поле має свою адресу – місце його знаходження в загальному просторі для зберігання кодів повідомлень (внутрішньої пам’яті). При опрацюванні інф-ції процесор вибирає дані та програми з пам’яті за конкретними адресами їх знаходження. Ці адреси пересилаються до процесора через спеціальну шину адрес, а дані спрямовуються до запам’ятовуючого пристрою або до процесора через шину даних. Управляючі сигнали надходять від процесора до периферійних пристроїв та запам’ятовуючих пристроїв через шину управління.

Принцип програмного управління роботою комп полягає в тому, що всі арифметико-логічні та управляючі операції в комп здійсн за програмами, які зберігаються в ОЗП.

Основні хар-ки комп:

  • розрядність процесора (тактова частота), тобто к-тю бітів, яку він може обробити одночасно, та його внутрішньою організацією;

  • ємність запам’ятовуючого пристрою;

  • оперативна пам’ять

  • Час доступу - Швидкодія модулів ОП, це період часу, необхідний для прочитування min порції інформації з елементів пам’яті або запису в пам’ять.

  • Щільність запису - об’єм інформації, записаної на одиниці довжини доріжки (біт/мм)

  • Швидкість обміну інформації - швидкість запису/прочитування на носій, яка визначається швидкістю обертання і переміщення цього носія в пристрої

4.Системи. Поняття про системи. Матеріальні, абстрактні та змішані системи. Наочне подання складу і структури систем. Поняття про системний аналіз. Систематизація та класифікація. Знакові системи. Мови як знакові системи. Природні та формальні мови. Алгоритмічні мови та мови програмування як приклади формальних мов.

Система - в философском смысле - объективное единство закономерно связанных между собой элементов, предметов, явлений, а также знаний о природе и обществе. Система - по П.К.Анохину - комплекс избирательно вовлеченных элементов, взаимосодействующих достижению заданного полезного результата, который принимается основным системообразующим фактором.

Нас оточує безліч різноманітних об’єктів. Для того щоб ми могли спілкуватися й розуміти один одного, необхідно дати їм назви, тобто визначити за допомогою певних понять. Часто одне й те саме поняття використовують для різних за своєю природою об’єктів і тоді необхідно чітко з’ясувати, про що конкретно йдеться. До понять, які є досить широковживаними, можна віднести і слово “система”.

Системи:

Абстрактні системи можуть бути ідеальні відображення реальних систем (До реальних належать ті, що реально існують у природі, техніці або суспільстві. Наприклад, реальними є Сонячна система, прокатний стан, Україна як держава) та процесів (карти місцевості, технічні креслення тощо), а також інші ідеальні конструкції (системи рівнянь, алгоритми та інші).

Матеріальні: 1. Штучні – Знаряддя Механізми Машини Автомати Роботи

2. Природні – Живі Неживі Екологічні Соціальні

Змішані – Ергономічні Біотехнічні Організаційні Автоматизовані

Основні поняття, що допомагають уточнювати уявлення про систему: елемент, компоненти, підсистеми, зв’язок, ціль.

Під елементом прийнято розуміти найпростішу частину системи, яку умовно розглядають як неподільну. Наприклад, елементами комп’ютера можна вважати процесор, плати, шини, монітор та інші великі блоки або їх складові – мікросхеми, транзистори, з’єднання тощо.

Складові, стосовно яких невідомо, чи є вони неподільними, називають компонентами системи; складові, у яких виділяють більш елементарні частини, – підсистемами. Розподіл на підсистеми пов'язаний із можливістю вичленовування сукупностей взаємозалежних елементів (чи компонентів), здатних виконувати відносно незалежні функції (підцілі), спрямовані на досягнення загальної мети системи.

Поняття “зв'язок” входить до будь-якого визначення системи й характеризує чинники виникнення й збереження її цілісності та властивостей. Цей термін одночасно відбиває як будову (статику), так і

функціонування (динаміку) системи.

Термін “ціль” і пов'язані з ним поняття доцільності, цілеспрямованості лежать в основі уявлень про розвиток системи.

Структура (від лат. “structure” – будова, розташування, порядок) відбиває певні взаємозв'язки, взаєморозташування складових частин системи, її будову.

Структура - расположение и связь частей, составляющих целое. Структуры различаются:

- по сфере существования на материальные (физические, биологические, химические) и идеальные (психические, познавательные, логические);

- по характеру связи на порядковые, композиционные, топологические;

- по направленности на субстанциальные и функциональные;

- по разнообразию связей на простые и сложные.

Існують різні аспекти поняття системи: філософський (теоретико-пізнавальний), науково-дослідний, проектний, інженерний тощо. Іншими словами, у термін “система” на різних стадіях розгляду об'єкта вкладають різний зміст.

Можна назвати багато різних систем: біологічні, екологічні, економічні, зв'язку, знакові, інформаційні, моделей, обробки даних, обчислювальні, планетні, поглядів і переконань, показників, політичні, правові, рівнянь, Сонячна, фінансові, безліч інших. Розвиток науки спричинив виникнення таких понять як “великі системи”, “складні системи”, “ієрархічні системи”. Їх вивчення пов'язане з необхідністю розробки загальних понять, категорій і методів дослідження.

Класифікація

Класифікаційна ознака

Тип системи

1

Природа елементів

Реальні (фізичні), Абстрактні

2

Походження

Природні, Штучні, Змішані

3

Тип змінних

З якісними змінними, З кількісними змінними, Зі змішаним описом змінних

4

Тип оператора системи

Чорний ящик, Непараметричний клас,

Параметричний клас, Білий ящик

5

Термін існування

Сталі, Тимчасові

6

Мінливість властивостей

Статичні, Динамічні

7

Ступінь складності

Прості, Складні, Великі

8

Відношення до зовнішнього середовища

Закриті,

Відкриті

9

Реакція на вплив, що збурює

Активні

Пасивні

10

Характер управління

Керовані зовні, Самокеровані,

З комбінованим управлінням,

Без управління

11

Ступінь організованості

Добре організовані, Погано організовані (дифузні), Ті, що самоорганізуються

12

Ступінь участі та впливу людини

Технічні, Людино-машинні, Організаційні

Основным методом исследования больших систем является системный анализ. Основные принципы системного анализа:

• выявить и четко формализовать основную цель, достигаемую в результате принятия решения;

• рассмотреть проблему как целое, как единую систему и выявить все возможные последствия и взаимосвязи каждого частного решения;

• выявить и проанализировать возможные альтернативные пути достижения цели;

• цели, стоящие перед отдельными частями системы (подсистемы), не должны вступать в конфликт с глобальной целью большой системы.

Сукупність знаків утворює знакову систему.

Класифікація знакових систем за особливостями знакового складу:

  1. Замкнені та відкриті знакові системи: в замкнених системах кількість знаків чітко визначена, і кожен новий знак перетворює вихідну знакову систему у нову; у відкритих системах поява нових знаків не порушує старої системи.

  2. Прості та складні знакові системи: прості складаються з однорідних знаків, складні – з різнотипних знаків. Складні системи можуть бути одно- та багатоярусними. В останніх виникає ієрархічне підпорядкування – знаки однієї підсистеми можуть бути зведені, спрощені до знаків іншої.

  3. Перехресні та самобутні знакові системи: всередині перехресних систем містяться одні і ті самі знаки, самобутні – не перетинається з іншими.

Класифікація знакових систем за матеріальною природою:

  1. звукові (усна мова, музика тощо), сприймаючий аналізатор – слуховий;

  2. графічні (алфавіт, живопис, фотографія, стенографія, загальнонаукові символи, ноти, ієрогліфи тощо), сприймаючий аналізатор – зоровий;

  3. рух (танець, мова глухонімих, положення рук регулювальника), сприймаючий аналізатор – зоровий;

  4. запах, сприймаючий аналізатор – органи нюху;

  5. колір (світлофор, кольори як символи), сприймаючий аналізатор – зоровий;

  6. форма (співвідношення опуклостей та впадин в алфавіті сліпих), сприймаючий аналізатор – тактильний, органи дотику;

  7. предмет (ялинка як символ новорічних свят, обручка як символ одруженості), сприймаючий аналізатор – зоровий;

  8. матеріал (золото як символ багатства, сталь як символ міцності), сприймаючий аналізатор – зоровий;

  9. вчинок (заручини як символ обіцянки вступити у шлюб), сприймаючий аналізатор – переважно зоровий.

Мова — це знакова система, яка служить засобом вираження думок, засобом спілкування між людьми, засобом передачі думок, знання, інформації від людини до людини, від покоління до покоління.

Мовний знак — це одиниця мови, тобто букви, які складаються як із звукових знаків (фонем), так і з відповідних їм друкарських, графічних знаків.

Усі мови поділяються на природні (розмовні) та штучні (формалізовані).

Природні (розмовні) мови виникли історично, у процесі практичної та теоретичної діяльності людей. Природні мови називають ще національними мовами. У природній мові розрізняють алфавіт і граматику.

Штучні (формалізовані) мови — це особливі системи знаків і символів, які створюються людьми з певною метою: для скорочення запису текстів, здійснення математичних та логічних операцій із знаками, уникнення багатозначності (полісемії) природної мови.

До штучних або формалізованих мов належать різноманітні системи знаків-сигналів (наприклад, знаки дорожнього руху), кодових систем (наприклад, азбука Морзе), мова формул або наукова мова, яка створюється в різних науках вченими (формули у математиці, логіці, фізиці, хімії та ін.), мова програмування (Алгол, Фортран, Кобол та ін.) Основна особливість штучних мов — їх допоміжна роль у відношенні до природних мов, вузькофункціональний характер використання, більша умовність виразу.

Алгоритмі́чна мо́ва – формальна мова, призначена для записування алгоритмів

Під алгоритмічною мовою розуміють набір символів, систему правил складання з цих символів конструкцій для запису алгоритмів, а також систему правил, які дозволяють однозначно розуміти зміст цих конструкцій. Алгоритмічну мову, яка застосовується для запису програм і даних у процесі розв`язування задач на ЕОМ, називають мовою програмування. Зараз існує більше 2000 алгоритмічних мов програмування, серед яких нараховується близько 120 мов, що одержали значне поширення.

Мо́ва програмува́нняформальна мова представлення програм для системи програмування. (Фортран, Кобол, Алгол, Pascal , Java , C , C++, C#, Objective C, Smalltalk, Delphi

5,12Інформаційна (комп’ютерна) система. Поняття інформаційної (комп’ютерної) системи. Апаратна та інформаційна складові інформаційної системи. Функціональна схема та принципи роботи комп’ютера. Структурна схема ПК.

Інформаційною систкмою називають суеупність взаємозалежних засобів (пристроїв, технологій, персоналу), що зберігають й опрацьовують інформацію. Сучасні інформаційні системи для збереження й опрацювання інформації обов’язково використовують комп’ютерну техніку, тому їх називають також інформаційно – обчислювальними системами.До ІС всі дані надходять від джерела інф-ції. Ці дані надсилаються на зберігаються чи зазнають певної обробки в с-мі і потім передаються споживачеві.Якщо між користувачем і ІС існує зворотний зв'язок, то с-ма наз замкненою.Розглянемо основні апаратні компоненти ІС:

  • набір комп.;

  • пристрої введення інф.;

  • пристрої виведення інф.;

  • зовнішні (знімні) накопичувачі;

  • комунікаційне обладнання;

  • блоки електричного живлення.

Комп’ютери. В ІС залежно від її призначення можуть використовуватись ПК і промислові комп. різної потужності та конфігурації.Компонентами комп. є мікропроцесор, ОПЗ, системна шина й інші електронні схеми, що розміщуються в корпусі системного блока комп. Центральним вузлом у комп. є мікропроцесор, що виконує дві основні функції: очислення відповідно до програми і управління комп.

Периферійні пристрої. Пристрої введення і виведення, зовнішні накопичувачі, комунікаційне обладнання, блоки живлення – усе це називається периферійними пристроями (ПП).Ці пристрої підключаються до комп., що є центральними складовими ІС.

Пристрої введення інф. Найбільш універсальним пристроєм введення інф. є клавіатура. Сюди належать також маніпулятори типу миша, трекболи і джойстики. Точне введення малюнків і креслень можна виконувати за допомогою дигитайзерів. Для оптичного зчитування зображень і перетворення на цифровий код використовуються сканери. Для введення звукової інф. використовується мікрофон, що підключається до входу звукової плати.

Пристрої виведення інф. Основним таким пристроєм є монітор. Зображення, яке з’являється на екрані монітора, визначається відеосигналом, що надходить у монітор від спеціального пристрою – відеоадаптера. Найпоширенішими пристроями для виведення інф. на папір є принтери.

Накопичувачі. Для збереження інф. служать різного роду накопичувачі на дисках, що відносять до зовнішньої пам’яті ПП.

Комунікаційне обладнання (мережний адаптер, модем).

12. Необхідною складовою ІС є програмне забезпечення (ПЗ). Воно слугує інформац забезпеченням. комп системи. ПЗ поділяється на такі категорії:

Системні програми.- признач для управління пристроями компа та обчисл процесами. Містять у собі ОС та системи текстових та діагностичних програм, що забезпечують технічне функціонування комп., управління взаємодією різних програм і пристроїв, розподіл ресурсів між програмами користувачів, діагностику несправностей тощо. Особливе місце тут посідають: ОС (MS – DOS, Windows, Unix), драйвери, програми – оболонки, утиліти.

Інструментальна система являю собою комплекс прграмних засобів, призначених для створення нових програм. Обов. містить мову програмування (бейсик, фортран, ада, си ++) і середовище для розробки додатків.

Прикладні програми. До них належать програми різноманітного призначення: опрацювання тексту, видавничі системи (Page Maker), електронні таблиці, СУБД, математичні пакети, системи оптичного розпізнавання, програми – перекладачі, графічні пакети, програми для Web – дизайну, системи підготовки мультимедійних публікацій, антивірусні програми, програми – архіватори.

Основні хар-ки ПК. Принципи роботи комп’ютера: принцип програмного управління, принцип адресності.Принцип адресності полягає в тому, що дані та програми знаходяться на окремих полях простору для зберігання кодів повідомлень (комірках, регістрах) в ОЗП. Кожне поле має свою адресу – місце його знаходження в загальному просторі для зберігання кодів повідомлень (внутрішньої пам’яті). При опрацюванні інф-ції процесор вибирає дані та програми з пам’яті за конкретними адресами їх знаходження. Ці адреси пересилаються до процесора через спеціальну шину адрес, а дані спрямовуються до запам’ятовуючого пристрою або до процесора через шину даних. Управляючі сигнали надходять від процесора до периферійних пристроїв та запам’ятовуючих пристроїв через шину управління.

Принцип програмного управління роботою комп полягає в тому, що всі арифметико-логічні та управляючі операції в комп здійсн за програмами, які зберігаються в ОЗП.

Магістрально – модульний принцип будови комп. полягає в тому, що їз окремими апатними складовими є модулі, обмін інф. між якими здійснюється через систему магістраль.

Обмін даними між окремими пристроями здійснюється з допомогою ліній зв’язку, які називаються шинами. Шина – це сукупність паралельних ліній, по яких на основі спеціальних алгоритмів передається інф. від одного модуля комп. до іншого за допомогою електричних сигналів. Для передачі адрес, даних та керуючих сигналів використовуються окремі шини. Усі шини в сукупності утворюють системну магістраль.

Комп'ютер - це електронний пристрій, що виконує операції введення інформації, зберігання та оброблення її за певною програмою, виведення одержаних результатів у формі, придатній для сприйняття людиною. За кожну з названих операцій відповідають спеціальні блоки комп'ютера:

пристрій введення,

центральний процесор,

запам'ятовуючий пристрій,

пристрій виведення.

Всі ці блоки складаються з окремих дрібніших пристроїв. Зокрема в центральний процесор можуть входити арифметико-логічний пристрій (АЛП), внутрішній запам'ятовуючий пристрій у вигляді регістрів процесора та внутрішньої кеш-пам'яті, керуючий пристрій (КП). Пристрій введення, як правило, теж не є однією конструктивною одиницею. Оскільки види інформації, що вводиться, різноманітні, джерел може бути декілька. Це стосується і пристрою виведення.

6.Апаратна складова іс. Основні складові апаратного забезпечення комп системи та їх функціональне призначення.

Комп'ютер являє собою сукупність засобів, які призна­чені для автоматизації процесів обробки та зберігання інформації. Інша назва комп'ютера — електронна обчислю­вальна машина (ЕОМ). Він здатний виконувати обчислення, опрацьову­вати тексти, розпізнавати і формувати зображення, перетво­рювати та аналізувати сигнали, керувати різноманітними об'єктами і технологічними процесами, розв'язувати логічні задачі тощо.

Технічні засоби, які входять до складу комп'ютера, нази­ваються його апаратним забезпеченням (hardware).

До складу апаратної частини ком­п'ютера повинні входити такі основні пристрої (функціо­нальні блоки): пристрій управління, арифметико-логічний пристрій (АЛП), оперативна пам'ять і пристрої введення та виведення.

Здебільшого АЛП та пристрій управління не розгляда­ються окремо, а об'єднуються одним словом «процесор». Процесор — це пристрій для опрацювання даних. Саме процесор виконує всі ті дії, які необхідні для розв'язання конкретної задачі, що ставить перед комп'ютером користувач. Процесор виконує команди одну за одною, тобто працює послідовно. Існують паралельні обчислювальні системи, які мають кілька процесорів, що працюють одночасно.

Процесор персонального комп'ютера виконаний у вигляді мікросхеми — єдиного мікроелектронного при­строю, створеного на кристалі напівпровідника і вміщеного в мініатюрний корпус (тому він називається мікропроцесо­ром).

Основними параметрами процесорів є: тактова частота, розрядність, робоча напруга, коефіцієнт внутрішнього домноження тактової частоти, розмір кеш пам'яті.

Тактова частота визначає кількість елементарних операцій (тактів), що виконуються процесором за одиницю часу.

Розрядність процесора показує, скільки біт даних він може прийняти і обробити в свої регістрах за один такт. Сучасні процесори сімейства Intel є 32-розрядними і навіть 64-розрядними.

Робоча напруга процесора забезпечується материнською платою, тому різним маркам процесорів відповідають різні материнські плати. Зараз робоча напруга процесорів не перевищує 3 В. Пониження робочої напруги дозволяє зменшити розміри процесорів, а також зменшити тепловиділення в процесорі, що дозволяє збільшити його продуктивність без загрози перегріву.

Коефіцієнт внутрішнього домноження тактової частоти - це коефіцієнт, на який слід помножити тактову частоту материнської плати, для досягнення частоти процесора.

Кеш-пам'ять. Обмін даними всередині процесора відбувається набагато швидше ніж обмін даними між процесором і оперативною пам'яттю. Тому, для того щоб зменшити кількість звертань до оперативної пам'яті, всередині процесора створюють так звану надоперативну або кеш-пам'ять. Коли процесору потрібні дані, він спочатку звертається до кеш-пам'яті, і тільки якщо там потрібні дані відсутні, відбувається звертання до оперативної пам'яті. Чим більший розмір кеш-пам'яті, тим більша ймовірність, що необхідні дані знаходяться там.

Пам'ять комп'ютера поділяється на внутрішню (основну) та зовнішню. До внутрішньої пам'яті відносяться: опера­тивна пам'ять, регістри процесора, постійна пам'ять і кеш-пам'ять.

Оперативна пам'яті — це електронна пам'ять для збе­рігання, програм та даних, які опрацьовує процесор у даний проміжок часу.

Регістри — це надшвидка пам'ять процесора. Вони збе­рігають адресу команди, саму команду, дані для її виконання і результат.

Кеш-пам'ять є проміжним запам'ятовуючим при­строєм і використовується для прискорення обміну між процесором і RAM.

Постійна пам'ять — це електронна пам'ять для довго­тривалого зберігання програм та даних. Використовується вона тільки для читання інформації.

Комп'ютер має зовнішню пам'ять, яка використовується для довготривалого збереження програм та даних. Вона ре­алізується за допомогою спеціальних пристроїв (накопичувачів), які залежно від способів запису та зчитування діляться на магнітні, оптичні та магнітно-оптичні.

Пристрої, в яких використовуються магнітні стрічки, належать до пристроїв з послідовним доступом. Пристрої, які використовують магнітні та оптичні диски, належать до пристроїв з прямим доступом. У персональних комп'ютерах застосовуються магнітні диски двох типів — незмінні тверді (жорсткі) та змінні гнучкі. Вони дають змогу здійснювати як введення; так і ви­ведення даних.

Пристрої введення та виведення.

Дисплей — це пристрій відображення даних. Більшість дисплеїв можуть відображати на екрані дані в різних фор­мах — числовій, текстовій, графічній. Форма відображення даних залежить від можливостей комп'ютера, наявності відповідної апаратної частини — графічної плати (або графічної карти). Основний пристрій дисплея — електрон­но-променева трубка. В залежності від принципу дії, монітори поділяються на монітори з електронно-променевою трубкою та дисплеї на рідких кристалах. Основні параметри моніторів є розмір по діагоналі, роздільна здатність, частота регенерації (обновлення) та клас захисту.

Клавіатура - це стандартний клавішний пристрій введення, призначений для введення алфавітно-цифрових даних та команд керування. Комбінація монітора та клавіатури забезпечує найпростіший інтерфейс користувача: за допомогою клавіатури керують комп'ютерною системою, а за допомогою монітора отримують результат.

Маніпулятор "миша" - це пристрій керування маніпуляторного типу. До числа параметрів миші, якими може керувати користувач, належать: чутливість (характеризує величину переміщення курсору миші на екрані при заданому переміщенні миші), функції лівої та правої клавіш, а також чутливість до подвійного кліку (визначає максимальний проміжок часу, протягом якого два окремих кліки клавіші розглядаються як один подвійний клік).

Принтери призначені для виведення інформації на тверді носії, здебільшого на папір. За принципом дії розрізняють: матричні, струменеві та лазерні принтери.

Сканери - це пристрій, який дає змогу вводити в комп'ютер чорно-біле або кольорове зображення, прочитувати графічну та текстову інформацію. Сканер використовують у випадкові, коли виникає потреба ввести в комп'ютер із наявного оригіналу текст і/або графічне зображення для його подальшого оброблення (редагування і т.д.).

Основні технічні характеристики сканерів: роздільна здатність, глибина представлення кольорів, динамічний діапазон. , метод сканування. , область сканування. , швидкість сканування.

Модем - це пристрій призначений для під'єднання комп'ютера до звичайної телефонної лінії. Назва походить від скорочення двох слів - МОдуляція та ДЕМодуляція.

  1. Архітектура комп’ютера. Поняття архітектури комп’ютера. Класична архітектура комп’ютера і принципи фон Неймана. Удосконалення і розвиток внутрішньої структури комп’ютера. Основний цикл роботи комп’ютера. Система команд комп’ютера і способи звернення до даних.

Архітектура ЕОМ – це опис сукупності пристроїв та блоків ЕОМ і зв’язки між ними. Поняття архітектури тісно пов’язане з принципами роботи ЕОМ. Принципи фон Неймана у конструюванні обчисл машин:

  • Принци програмного керування – програма має бути розміщена у памяті ЕОМ та послідовно виконуватися за доп простих однотипних дій. Тобто програма має поянювати машині послідовність і характер дій, що виконуються. Програма міститься у памяті ЕОМ, що відрізняє ці машини від дофоннемовських.

  • Принцип адресності – кожній комірці памяті відповідає номер, який наз. адресою комірки. На рівні логіки оперативну пам'ять подано у вигляді набору комірок (ОП). У найпростішому випадку ОП складається з N комірок з послідовними номерами від 0 до N-1.Номер комірки є її адресою, за якою можна звернутися до комірки в процесі запису-зчитування. Число, що зберіг-ся в комірці є її вмістом або значенням.

Компоненти обч машини за фон Нейманом:

  1. Оперативна пам'ять ОП склад-ся з пронумерованих комірок, у кожну з яких може бути записане одне двійкове число.

  2. Арифметично-логічний пристрій – може виконувати певний набір команд, що відповідають арифметичним та логічним операціям. Результат викон команди зберігається в АЛП до надходження наступної команди.

  3. Пристрій управління ПУ– забезп читання та запис інфи до комірок памяті, формує сигнали для керування роботою АЛП та зовн пристроїв.

  4. Зовнішні пристрої ЗП – пр. введення та виведення інфи: клава, монітор, принтер.

У ході еволюції обч машин АЛП та ПУ були об’єднані в одну схему мікропроцесора, а архітектура компа значно ускладнилася. Однак осн принципи конструювання ЕОМ фон Неймана залиш-ся в силі.

Робота ЕОМ фон Неймана моделює роботу суч компів. Користувач за доп зовн пристроїв вводить програму, яка записується машиною до ОП. Програма має вигляд послідовного списку команд (інструкція для пристрою керування ЕОМ)

Конструкція ЕОМ фон Н

Виконання програми починається з того, що пристрій керування зчитує пам'ять комірки, у якій міститься перша команда програми, та організовує її виконання. Команда надходить до АЛП, у якому виконується певна операція. Після виконання однієї команди ПУ починає виконання команди з наступної комірки памяті. Порядок комірок ОП, з яких відб-ся зчитування, визнач-ся за доп команд ПУ. Тобто ПУ виконує програми автоматично, без втручання людини – в цьому і полягає принцип прогр керування.

Команда - это описание элементарной операции, которую должен выполнить компьютер.

В общем случае, команда содержит следующую информацию:

-код выполняемой операции;

-указания по определению операндов (или их адресов);

-указания по размещению получаемого результата.

Центральный процессор понимает определенную систему команд, т. е. те коды, которые предписывают ему выполнение определенных операций. Любая программа представляется в виде последовательности таких кодов. В период работы программы центральный процессор в каждый момент времени выполняет одну из ее команд, причем делает это с очень высокой скоростью.

Также операц система предоставляет пользователю определенный набор команд и соответствующих им ответных реакций компьютера, с помощью которых можно управлять вычислительной машиной

Ввод. Клавиатура - самое распространенное устройство для взаимодействия с компьютером. Программное обеспечение, управляющее машиной, интерпретирует определенные комбинации вводимых символов или как команды, которые надо выполнить, или как данные, подлежащие обработке. Простые программы можно ввести непосредственно с клавиатуры, однако более сложные и большие программы обычно загружаются в оперативную память компьютера с помощью специального внешнего устройства (например, для ввода), которое передает в машину хранимую на диске информацию.

Обработка. В блоке центрального процессора устройство управления следит за порядком выполнения операций, а арифметико-логическое устройство выполняет арифметические и логические операции. Активная программа помещается в оперативное запоминающее устройство (ОЗУ) компьютера, благодаря чему центральный процессор может выбирать команды последовательно, одну за другой. Программы, которые всегда хранятся в постоянном запоминающем устройстве (ПЗУ), обеспечивают начальную активизацию компьютера и поддерживают взаимодействие процессора с устройствами ввода-вывода.

Вывод. Видеотерминал обеспечивает отображение графических результатов вычислений. Обычно компьютер выводит на экран информацию, поступающую с клавиатуры, а также свои ответы. Принтер служит для вывода информации на бумагу, Информация может также выводиться в виде искусственной речи или электрических импульсов

  1. Архітектура мікропроцесорів. Історія розвитку мікропроцесорів. Внутрішня організація мікропроцесора. Робота мікропроцесора з пам’яттю. Методи адресації. Формати даних. Опрацювання переривань. Робота мікропроцесора із зовнішніми пристроями. Приклад системи команд мікропроцесора.

Центральний процесор— це основний робітник компонентів комп'ютера, що виконує арифметичні й логічні операції, задані програмою, управляє обчислювальним процесом і координує роботу всіх пристроїв комп'ютера.

Центральний процесор містить у собі:

- арифметико-логічний пристрій;

- шини даних і шини адреси;

- регістри;

- лічильники команд;

- кеш - дуже швидка пам'ять малого обсягу (від 8 до 512 Кбайт);

- математичний співпроцесор чисел із плаваючою крапкою.

Сучасні процесори виконуються у вигляді мікропроцесорів. Фізично мікропроцесор являє собою інтегральну схему - тонку пластинку кристалічного кремнію прямокутної форми площею всього кілька квадратних міліметрів, на якій розміщені схеми, що реалізують всі функції процесора. Кристал-пластинка міститься в пластмасовому або керамічному плоскому корпусі і з'єднується золотими проводками з металевими штирьками, щоб його можна було приєднати до системної плати комп'ютера.

Перший мікропроцесор був випущений в 1971 р. фірмою Intel (США) - МП 4004.Також у цей час випускається кілька сотень різних мікропроцесорів, але найбільш популярними і розповсюдженими є мікропроцесори фірми Intel і AMD. Процесор є модулем, призначенням якого є виконання розміщеної в пам’яті комп’ютера програми та управління іншими компонентами системи. Схема процесора здатна виконувати обмежену кількість відповідним чином закодованих команд, що в сукупності становлять його операційний ресурс. Операційний ресурс сучасних процесорів становить 100 – 400 команд і містить команди обміну даними, команди арифметичних операцій, команди порозрядних логічних операцій, команди зсувів та ін.

Найрозповсюдженішими моделями мікропроцесорів, які застосовуються в персональних комп’ютерах (ПК) є мікропроцесори, ряду х86 фірми Intel Corporation та сумісні з ними моделі інших фірм (насамперед, фірми Advanced Micro Devices – AMD). Основною ознакою їх класифікації є розрядність внутрішньої шини даних

Розрядність Intel Corporation Сумісні функціональні аналоги

8-розрядні 8080, Z80 КР580ВМ80 (СРСР)

16-розрядні 8086/8088, 80286 КР1810ВМ86 (СРСР)

32-розрядні 80386, 486, 586, P5 (Pentium), P6 (Pentium II/III/IV, Celeron) Am386, Am486, Am5x86 (5k86), AMD K5, K6, K6-II, K6-II (фірма AMD)

64-розрядні P7 (Itanium) – Merced, McKinley

Характеристики процесора:

-тактова частота – кількість елементарних операцій в секунду;

-розрядність регістрів – кількість Bit, що одночасно можуть опрацьовуватись в середині процесора.

- ємність кеш-памяті.

Мікропроцесор виконує дві основні функції. По-перше, він здійснює обчис­лення згідно з програмою, яка зберігається в оперативній пам'яті. По-друге, забезпечує загальне керування комп'ютером та обчислювальними процесами.

Отже,функції мікропроцесора:

  • вибірка команд з ОЗП;

  • декодування команд (тобто визначення призначення команди, способа її виконання та адре операндів);

  • виконання операцій, закодованих в командах;

  • управління пересиланням інформації між своїми внутрішніми регістрами, ОП та зовнішніми пристроями;

  • обробка сигналів від зовнішніх пристроїв;

  • управління різними пристроями, що входять до складу комп’ютера.

Алгоритм роботи процесора.

Запишемо у вигляді схеми.

ПУ – пристрої управління; АЛП – арифметико-логічний пристрій;Частота,розрядність,КЕШ-память,регістри.Ф-ї обробка інформаціїї.

Постійна пам’ять.

Одразу ж після включення мікропроцесор звертається до оперативної пам’яті, інтерпритуючи її вміст, як машинні коди команд програми, тобто розпочинає виконання програми. Однак на даний момент жодної програми в оперативній пам’яті немає, оскільки при відключенні живлення її вміст втрачається, тобто має місце проблема завантаження програми до оперативної пам’яті. Цей процес, в свою чергу, також має здійснюватися програмно, тобто необхідна програма, яка б постійно зберігалася в пам’яті і виконувала роботу по завантаженню (ініціалізації) комп’ютера.

Для зберігання такої програми та іншої, важливої для комп’ютерної системи інформації використовується постійна пам’ять (ROM – Read-Only Memory). На відміну від оперативної, вміст постійної пам’яті не втрачається при вимкненні живлення комп’ютера, тобто інформація в ROM зберігається завжди. Така властивість постійної пам’яті отримала назву енергонезалежності. В свою чергу, постійна пам’ять дозволяє лише читання інформації і не дозволяє запис; початковий запис до ROM здійснюється на заводі виробником комп’ютера.

Мікропроцесор побудовано таким чином, що перше звернення до пам’яті він здійснює за адресою, яка фактично є адресою комірки постійної пам’яті, і таким чином розпочинає виконання записаної до неї програми. Цю програму прийнято називати програмою початкового завантаження або програмою ініціалізації комп’ютера.

Пристрої вводу-виводу.

Пристрої вводу-виводу (контролери, адаптери) забезпечують підключення та обмін інформацією з комп’ютером великої кількості різноманітних периферійних пристроїв. З одного боку, пристрої вводу – виводу підключені до системної магістралі, подібно до процесора та оперативної пам’яті і взаємодіють з останніми за інтерфейсом магістралі, з іншого – мають набір з’єднувачів для підключення відповідних периферійних пристроїв.

Подібно до комірок пам’яті, кожен пристрій має свій номер в системі (адресу), за якою він ідентифікується мікропроцесором або іншим пристроєм. Адресні простори оперативної пам’яті та пристроїв вводу – виводу є незалежними, тобто комірка пам’яті та подібний пристрій можуть мати однакову адресу в системі.

Стандартно в комп’ютері передбачена наявність таких пристроїв вводу-виводу:

Контролер клавіатури – забезпечує підключення клавіатури до комп’ютера та обробку її сигналів. У випадку натиснення клавіші контролер клавіатури генерує двійкове число, яке фактично скен- кодом клавіші або ASCII-кодом введеного символу.

Контролер прямого доступу до пам’яті (Direct Memory Access – DMA) – реалізує можливість перенесення великих масивів інформації між оперативною пам’яттю та будь-яким пристроєм без участі центрального процесора.

Контролер переривань – організує чергу запитів на обслуговування від різних пристроїв і генерує для мікропроцесора адрес (векторів) програм обробки переривань.

Контролери гнучкого та жорсткого дисків – забезпечують обмін даними та керування роботою жорстких та дисководів гнучких дисків, пристроїв CD-ROM, магніто-оптичних накопичувачів та ін.

Відеоадаптер – забезпечує необхідне перетворення інформації, попередньо розміщеної в його пам’яті, для відображення її в зручному вигляді на екрані монітора. Використовує архітектуру memory map, тобто пам’ять відеоадаптера знаходиться в межах адресного простору оперативної пам’яті комп’ютера. Використовуюється для підключення монітора.

Звуковий адаптер – реалізує можливість запису, обробки та відтворення аудіо-інформації. Використовується для підключення акустичних систем, мікрофонів, побутових аудіо-приладів.

Для підключення пристроїв вводу-виводу до системної магістралі на основній (материнській) платі комп’ютера є спеціальні з’єднувачі (слоти). В сучасних комп’ютерах більшість таких пристроїв є вбудованими (інтегрованими) в материнську плату і потреби в їх встановленні немає.

Система команд мікропроцесора

Сукупність команд, що можуть бути виконані конкретним мікропроцесором, називається системою команд мікропроцесора.

Команда визначає операцію, яку має виконати МП над даними. Команда містить у явній або неявній формах інформацію про те, де буде розміщений результат операції, а також про адресу наступної команди. Обсяг, займаний командою в пам'яті, складає декілька байт і залежить від призначення команди. У загальному випадку формат команди містить операційну та адресну частини. Команди містять однобайтний або двохбайтний код інструкції, за яким можуть випливати декілька байт, що визначають режим виконання команди, і операнди (об'єкти, над якими або за допомогою яких виконується команда). Команди можуть використовувати від нуля до трьох операндів. Нагадаємо, що операнд - це об'єкт у вигляді значення даних, вмісту регістрів або вмісту комірок пам'яті, з яким оперує команда.

Можна навести таку класифікацію команд МП сімейства Іntel 80X86:

- інструкції пересилання даних,

- інструкції введення-виведення,

- інструкції двійкової арифметики,

- інструкції десяткової арифметики,

- інструкції логічних операцій,

- зсуви й обертання (циклічні зсуви),

- інструкції обробки біт і байт,

Та ін

У деяких командах необхідний тільки один операнд і вони називаються однооперандними (або одноадресними) командами на відміну від двохоперандних (або двохадресних), у яких потрібні два операнда. При наявності двох операндів командою звичайно змінюється тільки один з них.

Формат команд процесорів СМ: а) двохадресна команда; б) одноадресна команда.

Найбільш гнучка команда вимагає до чотирьох операндів. Наприклад, команда додавання може вказувати адреси що складаються, адреса результату й адреса наступної команди. Якщо для завдання адреси потрібно 16 біт, то чотирьохоперандна команда займе 8 байт пам'яті, не з огляду на код операції. Отже, вийде повільнодіюча ЕОМ з величезною пам'яттю. Тому в більшості мікро ЭВМ будь-яких команд потрібно не більш двох операндів. Це досягається наступними прийомами: 1. Адреса наступної команди вказується тільки в командах переходів; в інших випадках чергова команда вибирається з комірок пам'яті, що випливають за виконаною командою. 2. Використання осередку, у якій знаходиться один з операндів, для запам'ятовування результату (наприклад, сума запам'ятовується в осередки першого операнда). По форматах команд можна судити про можливості ЕОМ.

Існують такі способи адресації:

Усі способи адресації пам'яті можна розділити на: 1) прямій, коли виконавча адреса береться безпосередньо з команди або обчислюється з використанням значення, зазначеного в команді, і вмісту якого-небудь регістра (пряма адресація, реєстрова, базова, індексна і т.д.); 2) непрямий, котрий припускає, що в команді утримується значення непрямої адреси, тобто адреси осередку пам'яті, у якій знаходиться остаточна виконавча адреса (непряма адресація).

Переривання - це примусова передача керування від виконуваної програми до системи (а через неї - до відповідної програми обробки переривання), що виникає при визначеній події. Переривання являють собою механізм, що дозволяє координувати стабільне функціонування окремих пристроїв обчислювальної системи і реагувати на особливі стани, що виникають при роботі процесора.

Механізм переривань реалізується апаратно-програмними засобами. Структури систем переривання (у залежності від апаратної архітектури) можуть бути різними, але усі вони мають одну загальну особливість - переривання неодмінне спричиняє зміну порядку виконання команд процесором.

Механізм обробки переривань незалежно від архітектури обчислювальної системи включає наступні елементи:

1 Встановлення факту переривання (прийом сигналу на переривання) і ідентифікація переривання (в ОС іноді здійснюється повторно, на кроці 4).

2. Запам'ятовування стану перерваного процесу. Стан процесу визначається насамперед значенням лічильника команд (адресою наступної команди, що, наприклад, у і80х86 визначається регістрами CS і IР - покажчиком команди), вмістом регістрів процесора і може включати також специфікацію режиму (наприклад, режим користувацький чи привілейований) і іншу інформацію.

3. Керування апаратно передається підпрограмі обробки переривання. У найпростішому випадку в лічильник команд заноситься початкова адреса підпрограми обробки переривань, а у відповідні регістри - інформація зі слова стану. У більш розвитих процесорах здійснюється досить складна процедура визначення початкової адреси відповідної підпрограми обробки переривання і не менш складна процедура ініціалізації робочих регістрів процесора.

4. Збереження інформації про перервану програму, що не вдалося врятувати на кроці 2 за допомогою дій апаратури. У деяких обчислювальних системах передбачається запам'ятовування великого обсягу інформації про стан перерваного процесу.

5. Обробка переривання. Ця робота може бути виконана тією же підпрограмою, які було передане керування на кроці 3, але в ОС найчастіше вона реалізується шляхом наступного виклику відповідної підпрограми.

6. Відновлення інформації, що відноситься до перерваного процесу (етап, зворотний кроку 4).

7. Повернення в перервану програму.

Кроки 1-3 реалізуються апаратно, а кроки 4-7 - програмно.

При виникненні запиту на переривання природний хід обчислень порушується і керування передається програмі обробки виниклого переривання. При цьому засобами апаратури зберігається (як правило, за допомогою механізмів стекової пам'яті) адреса тієї команди, з якою варто продовжити виконання перерваної програми. Після виконання програми обробки переривання керування повертається перерваній раніше програмі за допомогою занесення в покажчик команд збереженої адреси команди. Однак така схема використовується тільки в найпростіших програмних середовищах. У мультипрограмних ОС обробка переривань відбувається по більш складних схемах, про що буде більш докладно написано нижче.

Перехід від програми, що переривається, до оброблювача і назад повинний виконуватися як можна швидше. Одним зі швидких методів є використання таблиці, що містить перелік усіх припустимих для комп'ютера переривань і адреси відповідних оброблювачів. Для коректного повернення до перерваної програми перед передачею керування оброблювачу переривань вміст регістрів процесора запам'ятовується або в пам'яті з прямим доступом, або в системному стеці - system stack.

9 Арифметичні основи комп’ютерних систем. Системи числення, що використовуються в комп’ютерних системах. Показник економічності системи. Двійкова система числення, переваги двійкової системи числення.

Систе́ма чи́слення - сукупність способів і засобів запису чисел для проведення підрахунків.

Розрізняють такі типи систем числення:

  • позиційні

  • змішані

  • непозиційні

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]