Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Содержание билетов по физике.docx
Скачиваний:
20
Добавлен:
05.09.2019
Размер:
372.03 Кб
Скачать
  1. Закон всемирного тяготения.

  2. Сила тяжести: вес и невесомость.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Си­ла всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил за­коны движения небесных тел и выяснил, что

где G коэффициент пропорциональности, называется гравитационной постоянной. Чис­ленное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу вза­имодействия между свинцовыми шарами. В резуль­тате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.

Физический смысл гравитационной постоян­ной вытекает из закона всемирного тяготения. Если m1 = m2 = 1 кг, R = 1 м, то G = F, т. е. гравитацион­ная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное зна­чение: G = 6,67 • 10-11 Н • м2/кг2. Силы всемирного тя­готения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для мате­риальных точек и шаров (в этом случае за расстоя­ние принимается расстояние между центрами ша­ров).

Ч астным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым зако­ном Ньютона g = fт/m, следовательно, fт = mg. Сила тяжести всегда направлена к центру Земли. В зави­симости от высоты h над поверхностью Земли и гео­графической широты положения тела ускорение сво­бодного падения приобретает различные значения. На поверхности Земли и в средних широтах ускоре­ние свободного падения равно 9,831 м/с2.

В технике и быту широко используется поня­тие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате грави­тационного притяжения к планете (рис. 5). Вес тела обозначается Р. Единица измерения веса — 1 Н. Так как вес равен силе, с которой тело действует на опо­ру, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо найти, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следова­тельно, и вес тела равен силе тяжести (рис. 6):р = N = mg.

Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости на­блюдается в самолете или космическом корабле при движении с ускорением свободного падения незави­симо от направления и значения скорости их движе­ния. За пределами земной атмосферы при выключе­нии реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все те­ла, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состоя­ние невесомости.

Билет №9 (2)

  1. Электрический ток в металлах.

  2. Сопротивление металлического проводника.

  3. Закон Ома для участка цепи.

  4. Удельное сопротивление.

  5. Зависимость сопротивления металла от температуры.

  6. Сверхпроводимость.

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Электрический ток – упорядоченное движение свободных электронов. Если внутри металла нет электрического поля, то движение электронов хаотично и в каждый момент скорости различных электронов имеют разную величину и направление. Как только оно появляется, на каждый электрон начинает действовать сила, направленная в сторону, противоположную полю. Двигаясь под действием сил электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях она частично передается атомам и ионам решетки. Из-за этого происходит более интенсивное выделение тепла. При наличии тока происходит переход энергии упорядоченного движения электронов в энергию хаотического движения атомов, ионов и электронов (то есть во внутреннюю энергию тела). При наличии тока внутренняя энергия тока увеличивается.

Сверхпроводимость – явление исчезновения сопротивления некоторых веществ (металлов, растворов солей) при понижении температуры почти до абсолютного нуля.

В 1911 г. нидерландский ученый Камерлинг-Оннес обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля. Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.

Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.

Сверхпроводящие вещества уже используются в электромагнитах. Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя, т. к. очень сильное магнитное поле разрушает сверхпроводящее состояние. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 г.

В 1986 г. была открыта высокотемпературная сверхпроводимость керамик – соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.

Закон Ома для участка цепи. Рассмотрим простейшую электрическую цепь постоянного тока, составленную из одного гальванического элемента и проводника. На внешнем участке цепи электрические заряды движутся под действием сил электрического поля. Перемещение зарядов внутри проводника не приводит к выравниванию потенциалов всех точек проводника, т. к. в каждый момент времени источник тока доставляет к одному концу цепи точно такое же количество заряженных частиц, какое из него перешло к другому концу внешней электрической цепи. Поэтому сохраняется неизменным напряжение между началом и концом внешнего участка электрической цепи; напряженность электрического поля внутри проводников такой цепи отлична от нуля и постоянна во времени.

Немецкий физик Георг Ом в 1826 г. обнаружил, что отношение напряжение между концами металлического проводника, являющегося участком электрической цепи, к силе тока в цепи есть величина постоянная. Эту величину называют электрическим сопротивлением проводника.

Экспериментально установленную зависимость силы тока от напряжения и электрического сопротивления участка цепи называют законом Ома для участка цепи:

­ I=∆q/∆t ;I=[S под I(t)] Сила тока прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению участка цепи.

Зависимость сопротивления проводника от температуры. Если пропустить ток от аккумулятора через стальную спираль, то амперметр покажет уменьшение силы тока. Это означает, что с сопротивлением температуры сопротивление проводника меняется.

Если при температуре, равной 0С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t: (1)

Коэффициент называется температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при повышении температура на 1 К.

Для всех металлов >0 и незначительно меняется с изменением температуры. У растворов электролитов сопротивление с ростом температуры не уменьшается, а увеличивается. Для них α<0. При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (1) подставить значения и : Так как α мало меняется при изменении температуры, то можно считать, что удельное сопротивление проводника линейно зависит от температуры.

С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.

При повышении температуры возрастает число дефектов кристаллической решетки из-за тепловых колебаний ионов, – и это приводит к возрастанию удельного сопротивления кристалла.

Билет №10 (1)

Силы упругости: