Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты физика.doc
Скачиваний:
9
Добавлен:
04.09.2019
Размер:
2.88 Mб
Скачать

Билет 6

1. Движение по окружности. Рассмотрим движение тела по окружности. Если траекторией движения тела является конкретная окружность известного радиуса, то использовать для задания положения тела прямоугольную декартову систему координат совершенно необязательно. В этом случае легче поступить по-другому. Проведем через центр окружности прямую линию, задающую фиксированное направление. Пусть тело в данный момент времени находится в точке А на окружности. Если соединить точку А с центром окружности О радиусом, то угол φ между этим радиусом и фиксированным направлением полностью задает положение тела на окружности. В этом случае вместо двух координат x и y положение тела задается только одной величиной – углом φ.

Однако при таком способе задания положения тела должны измениться и некоторые другие кинематические характеристики движения. Так, например, скорость определяет быстроту изменения положения тела. При координатном способе задания положения скорость определяет быстроту изменения координаты тела. В нашем случае скорость должна определять быстроту изменения угла φ.

Угловая скорость и угловое ускорение. Пусть за некоторый промежуток времени Δt положение тела на окружности изменилось так, что радиус, соединяющий его с центром окружности, повернулся на угол Δφ. Величина

н азывается угловой скоростью. Аналогично изменяется понятие ускорения. Пусть за промежуток времени Δt угловая скорость тела изменилась на Δω. Величина

называется угловым ускорением.

В системе СИ углы измеряются в радианах [рад]. Поэтому единицей измерения угловой скорости в системе СИ является [рад/с = 1/с = с-1], а углового ускорения - [рад/с2 = 1/с2 = с-2]. Один радиан – это угол, вырезающий на окружности длину дуги, равную радиусу окружности. Численно 1 рад = 180°/π ≈ 57,3°. Длина дуги, которую вырезает на окружности угол φ рад равна . Поэтому между угловыми и линейными характеристиками движения имеется простая связь: . Для центростремительного ускорения можно написать: .

Их связь с линейной скоростью, центростремительным и тангенциальным ускорением.

Период и частота обращения. Движение по окружности можно характеризовать еще такими величинами:

Период обращения Т – время одного полного оборота

Частота ν – количество оборотов, совершаемых за единицу времени

Для движения по окружности можно использовать уравнения равномерного и равноускоренного движения. Так если движение по окружности происходит с постоянной по величине скоростью, то можно говорить о равномерном движении по окружности и написать:

Если при движении по окружности угловая скорость линейно изменяется, то можно говорить о равноускоренном движении по окружности и написать:

2. Потенциальные и непотенциальные силы. Рассмотрим еще один вид энергии, которая тоже характеризует способность тела совершать работу. Как уже упоминалось, если сила, действующая на тело, постоянна, то работа этой силы при перемещении тела из некоторого начального положения в конечное не зависит от формы траектории движения тела, а определяется только начальным и конечным состояниями. Дело в том, что таким свойством обладают очень многие и даже непостоянные силы. Все силы в природе можно разделить на два класса.

Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным состояниями тела, называются потенциальными или консервативными. Силы, работа которых зависит от формы траектории, называются непотенциальными или неконсервативными. Существует другой признак потенциальности силы: если работа силы при перемещении тела по произвольной замкнутой траектории равна нулю, то сила является потенциальной. Из известных нам механических сил гравитационная сила и сила упругости являются потенциальными, а сила трения – непотенциальной.

Работа потенциальной силы. Пусть на тело действует некоторая потенциальная сила и тело перемещается из некоторого начального положения 1 в некоторое конечное положение 2. Потенциальная сила при этом совершает работу А12, которая не зависит от способа перемещения, а определяется только положениями 1 и 2. Если же перемещать тело из положения 1 в положение 3, то сила совершает работу А13, которая определяется только положениями 1 и 3. Так же со всеми перемещениями из точки 1 в любую другую точку. Таким образом, если на тело действует потенциальная сила, то можно выбрать некоторое начальное положение, а все остальные положения характеризовать работой, совершаемой этой силой при перемещении тела из выбранного начального положения в любое конечное. То есть любому положению тела можно приписать работу, совершаемую потенциальной силой при перемещении тела из определенного начального положения в это конечное. Эта работа служит определением потенциальной энергии. А именно: потенциальной энергией тела в некоторой точке поля действия потенциальной силы называется работа, совершаемая потенциальной силой при перемещении тела из некоторого определенного начального положения в данное конечное, взятая с обратным знаком. При этом потенциальная энергия тела в выбранном начальном положении равна нулю.

Так как начальное положение отсчета потенциальной энергии можно выбрать произвольно, то потенциальная энергия тела в любом положении зависит от произвольно выбранного начального положения. Таким образом потенциальная энергия тела оказывается величиной неопределенной или, как говорят, потенциальная энергия определена относительно произвольно выбираемого начального положения. Можно, конечно, договориться и выбрать за ноль потенциальной энергии какое-либо определенное положение. Иногда именно так и поступают. Однако на практике чаще всего этого делать не обязательно. Дело в том, что на практике обычно представляет интерес не сама потенциальная энергия, а ее изменение при перемещении тела. А вот изменение потенциальной энергии от выбора нулевого уровня не зависит.

Пусть в некотором положении 1 потенциальная энергия тела равна W1, а в положении 2 – W2. Это значит, что потенциальная сила при перемещении тела из начального положения в положение 1 совершает работу А1 = −W1, а в положение 2 – А2 = −W2. Однако перемещение тела из начального положения в положение 2 можно представить как перемещение тела сначала из начального положения в положение 1, а затем из положения 1 в положение 2. То есть можно написать: А2 = А1 + А12, где А12 – работа, совершаемая потенциальной силой при перемещении тела из положения 1 в положение 2. Получается:

Работа потенциальной силы равна изменению потенциальной энергии, взятой с противоположным знаком.

Потенциальная энергия. Потенциальная энергия – величина скалярная и измеряется в Джоулях. Однако, в отличие от кинетической энергии, она может быть как положительной, так и отрицательной. Знак потенциальной энергии определяется выбором нулевого положения.

П отенциальная энергия силы тяжести. С

2

ила тяжести mg – потенциальная сила, так как она постоянна и по модулю и по направлению. Пусть тело массой m переместилось из начальной точки 1 в конечную точку 2. Рассмотрим работу, совершенную силой тяжести при этом перемещении. Так как эта работа не зависит от формы траектории перемещения, то можно выбрать ее произвольно, а именно, можно выбрать такую траекторию перемещения, работа на которой определяется наиболее просто. Пусть разность высот, на которых находятся положения 1 и 2 равна h. Переместим сначала наше тело вертикально вверх на высоту h, совершив перемещение S1, а затем передвинем горизонтально до точки 2, совершив перемещение S2. Совершенная при этом работа силы тяжести будет равна А = А1 + А2, где А1 – работа на перемещении S1, а А2 – работа на перемещении S2. Работа на первом перемещении равна , так как вектора силы тяжести и перемещения противоположны, а работа на втором перемещении просто равна нулю, так как вектора силы тяжести и перемещения взаимно перпендикулярны. Таким образом, общая работа равна .

Для сравнения переместим теперь тело из положения 1 в положение 2 непосредственно, совершив перемещение S3. Совершенная при этом работа равна:

Видим, что совершенная силой тяжести работа оказалась такой же. Но работа потенциальной силы равна изменению потенциальной энергии тела с противоположным знаком. Значит, при перемещении тела из положения 1 в положение 2 его потенциальная энергия изменилась на величину . То есть, если мы за ноль потенциальной энергии примем положение 1, то потенциальная энергия тела в положении 2 будет равна . Окончательно можно сказать, что потенциальная энергия тела массой m в поле тяжести Земли равна:

где h – высота, на которой находится тела относительно произвольно выбранного начального уровня.

При перемещении тела из положения, находящегося на высоте h1 в положение на высоте h2 сила тяжести совершает работу . Однако при перемещении тела на него кроме силы тяжести должна действовать еще какая-то внешняя сила. Причем, если тело перемещается без ускорения, то эта внешняя сила должна быть равна по модулю силе тяжести и противоположно ей направлена. При этом внешняя сила тоже совершает работу и эта работа по модулю будет равна работе силы тяжести, но противоположна ей по знаку. В любом случае, если на тело действуют только внешняя сила и потенциальная сила, и перемещение тела совершается без ускорения, то работы внешней силы и потенциальной силы равны по модулю и противоположны по знаку:

То есть можно сказать, что работа внешней силы равна просто изменению потенциальной энергии тела.

П отенциальная энергия протяженного тела. Потенциальную энергию тела в поле тяжести Земли можно определять по формуле только, если размеры тела малы, то есть, если можно считать, что все точки тела находятся на одной и той же высоте. А что делать, если размеры тела не малы? Рассмотрим произвольное протяженное тело массой m. Выберем начальный уровень, относительно которого мы будем определять высоту. Мысленно проведем очень близкие горизонтальные плоскости, как бы разбив тело на очень тонкие горизонтальные слои. Массы слоев обозначим снизу вверх Δm1, Δm2, Δm3, …, а высоту слоев относительно нулевого уровня обозначим h1, h2, h3, … (толщину каждого слоя будем считать малой по сравнению с высотой). Потенциальная энергия всего тела будет складываться из потенциальных энергий всех слоев, на которые его разбили:

Предположим, что есть некоторая точка тела, находящаяся на высоте hx такая, что потенциальную энергию тела можно записать как:

Тогда для высоты hx получаем:

Мы получили формулу, совпадающую с формулой для координаты центра масс. Более точно для потенциальной энергии эта точка называется центром тяжести тела. Более строго понятие центра тяжести будет дано дальше, но для большинства практических случаев точки центра тяжести и центра масс совпадают.

Таким образом, потенциальную энергию протяженного тела в поле тяжести Земли можно определять по формуле:

где hцт – высота, на которой находится центр тяжести тела.

Потенциальная энергия и силы упругости

Силы упругости, возникающие при упругой деформации, являются потенциальными.

Р ассмотрим пружину жесткостью k. Один ее конец закрепим, а за другой конец будем ее растягивать. По закону Гука зависимость силы упругости от величины деформации пружины имеет вид: . Эта зависимость линейная. Графиком такой зависимости является прямая, проходящая через начало координат. На графике зависимости силы от перемещения совершенная работа численно равна площади под графиком. Значит при растяжении пружины на Δl Работа силы упругости численно равна площади заштрихованного треугольника: . Но работа силы упругости отрицательна, так как сила упругости всегда направлена в сторону противоположную направлению деформации: . Значит потенциальная энергия упругой деформации равна:

Заметим, что здесь мы приняли, что при недеформированном состоянии энергия пружины равна нулю. Чаще всего именно так и принимается. Хотя это необязательно и в некоторых случаях за ноль энергии упругой деформации бывает лучше принять энергию деформированной пружины.

Пусть пружина растянута на величину Δl1. При дополнительном ее растяжении до величины Δl2 сила упругости совершает работу:

а работа внешней силы равна:

Потенциальная энергия гравитационной силы. Потенциальная энергия взаимодействия двух материальных точек (сферических тел) массами m1 и m2, находящихся на расстоянии R друг от друга (расстояние между центрами) равна:

Здесь за ноль потенциальной энергии принято состояние, когда тела находятся на бесконечном расстоянии друг от друга.