Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ФОПИ.docx
Скачиваний:
55
Добавлен:
23.08.2019
Размер:
1.19 Mб
Скачать

Применение

Пироэлектрический эффект используется для обнаружения инфракрасного излучения при изменении температуры с точностью до 10-6 К.

Пироэлектрические приемники имеют малую инерционность. Постоянная времени составляет 10-5 - 10-7 с и менее.

На основе пироэлектрического эффекта разработаны неселективные приемники полного поглощения. Эти приемники не меняют своих спектральных характеристик во времени и могут быть использованы для измерений в абсолютных единицах. Пироприемники полного поглощения изготавливаются в виде сферического или конусообразного черного тела. Значение коэффициента таких приемников может достигать 0,999.

В качестве материалов для разработки пироприемников применяются монокристаллы группы триглинсульфата, мелкозернистая керамика титаната бария, а также цирконат-титанат свинца.

  1. Фотогальванический эффект

Фотогальванический эффект заключается в возникновении электрического тока (фототока) при освещении полупроводникового p-n перехода, включенного в замкнутую цепь, или возникновении ЭДС на освещаемом образце при разомкнутой внешней цепи (фотоЭДС). Физическая природа фотогальванического эффекта связана с поглощением света полупроводником при одновременной генерации подвижных носителей – электронов и дырок.

Прибор, основанный на фотогальваническом эффекте, называется фотодиодом. Основой такого прибора является мелкий (глубиной 3…5 мкм) p+-n переход в эпитаксиальной пленке Si или Ge (рис. 3, а). Небольшая глубина p+-n перехода необходима для уменьшения поглощения светового потока Ф, достигающего перехода. С целью снижения объемного сопротивления кристалла эпитаксиальная пленка n-типа проводимости выращивается на подложке сильно легированного кремния или германия n+ типа проводимости.

Процессы, происходящие в p+-n переходе под воздействием света иллюстрируются с помощью энергетической зонной диаграммы перехода, представленной на рис. 3, б. Свет с энергией hν попадает в полупроводник через специальное окно, созданное на поверхности p+ - слоя. В результате освещения в p+-n переходе и прилегающих областях генерируются избыточные носители заряда – электроны и дырки.

Рис. 3. Фотогальванический эффект: а – физическая структура p-n перехода; б – схема процессов, происходящих в p-n переходе под воздействием света

Под воздействием внутреннего электрического поля Е в p+-n переходе электроны будут перемещаться в n-область, а дырки – в p+- область, где происходит их накопление. При отсутствии источника обратного смещения накопление основных носителей заряда в p+и n- областях ведет к снижению потенциального барьера между этими областями до значения φк-Uхх , где Uхх - величина фотоЭДС. В p+-n переходе появляется фототок jф, направление которого совпадает с направлением обратного теплового тока j0. В свою очередь снижение потенциального барьера в переходе на величину Uхх приводит к увеличению диффузионного тока jдиф неосновных носителей заряда через p+-n переход.

. (4.1)

Диффузионный ток jдиф направлен навстречу сумме токов jф+ j0. Поскольку, как уже отмечалось выше, что через изолированный полупроводник ток проходить не должен, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, то есть

jдиф=jф + j0. (4.2)

Возможны несколько вариантов включения p+-n перехода во внешнюю электрическую цепь.

При коротком замыкании внешних выводов p+-n перехода из выражений (4.1) и (4.2) следует, что величина фототока равна

. (4.3)

При фиксированном значении освещенности поверхности полупроводникового перехода значение фототока jф является параметром.

При разомкнутых выводах p+-n перехода на выводах появляется фотоЭДС Uф =Uхх, величина которой рассчитывается из соотношения (4.3):

. (4.4)

Появление фотоЭДС на выводах p-n перехода при освещении его светом носит название фотовольтаического эффекта.

При подключении к освещенному p+-n переходу источника обратного смещения c напряжением U ток в цепи будет равен

, (4.5)

где .

Подставляя значение jp-n в формулу (4.5), получим, что величина тока через освещенный p+-n переход определяется из выражения

. (4.6)

При значениях обратного напряжения |U|>>φт равенство (4.6) можно записать в виде

Рис. 4. Семейство вольтамперных характеристик (ВАХ) p-n

перехода при различных уровнях освещения (1, 2, 4 – квадранты ВАХ)

(4.7)

Из формулы (4.7) следует, что при освещении p+-n перехода, находящегося под обратным смещением, величина обратного тока возрастает на величину фототока jф.

В качестве примера на рис. 4 представлено семейство вольтамперных характеристик построенных в соответствии с выражением (4.6) для различных значений световых потоков,Ф, падающих на p+-n переход.

Видно, что при величине светового потока Ф0=0 ВАХ имеет обычный вид. При Ф≠0 графики ВАХ смещаются вниз на отрезки, равные –jфi. Различают два основных режима работы освещенного p-n перехода.

Фотодиодный режим реализуется при приложении к p-n переходу обратного напряжения смещения. При последовательном подключении нагрузки между p-n переходом и источником питания, в нагрузке протекает фототок, пропорциональный интенсивности освещения.

Режим генерации фото ЭДС осуществляется без подключения внешнего напряжения. Ему соответствует квадрант 4 вольтамперной характеристики (рис. 4.4). Этот режим применяется в солнечных батареях (элементах).

Включение p-n перехода фотодиода в прямом направлении практически не используется (1 квадрант ВАХ).