Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ФОПИ.docx
Скачиваний:
55
Добавлен:
23.08.2019
Размер:
1.19 Mб
Скачать

Процесс генерации

Система накачки создает в активной среде инверсную заселенность. Почти сразу атомы среды начинают спонтанно излучать фотоны в случайных направлениях. Фотоны, испущенные под углом к оси резонатора, порождают короткие каскады вынужденного излучения, быстро покидающего среду. Фотоны же, испущенные вдоль оси резонатора, отражаются от зеркал и многократно проходят сквозь активную среду, вызывая в ней все новые акты вынужденного излучения. Генерация начинается в тот момент, когда увеличение энергии волны за счет ее усиления при каждом проходе резонатора начнет превосходить потери, которые складываются из внутренних потерь (поглощение и рассеяние света в активной среде, зеркалах резонатора и др. элементах) и той энергии, которая поступает наружу сквозь выходное зеркало.

Режимы генерации

В зависимости от конструкции, способа накачки и состава активной среды лазеры излучают либо в непрерывном, либо в импульсном режиме. Непрерывное излучение дают газовые лазеры, импульсное — твердотельные; полупроводниковые и жидкостные лазеры могут работать как в том, так и в другом режиме.

Импульсный режим генерации обычно обусловлен импульсным режимом накачки (лампой-вспышкой, лазерной вспышкой). Если не приняты специальные меры, в активной среде возникает режим свободной генерации, при котором за время продолжения вспышки в активно среде успевает возникнуть целая серия импульсов. Чтобы лазер в каждом акте генерации излучал отдельный импульс, перед одним из зеркал его резонатора ставят оптический затвор, который открывается на время 10-4 — 10-10 с в момент, когда активная среда уже находится в состоянии инверсной заселенности. Вся энергия, накопленная в среде (от долей джоуля до нескольких сот джоулей), излучается в виде очень короткого, длительностью до фемтосекунд (10-15 с) и соответствующей мощностью порядка гигаватт (109 Вт), т. н. гигантского импульса.

Затвором для получения сверхкоротких лазерных импульсов может, например, служить кювета с раствором веществ, которые под действием светового импульса на короткое время становятся прозрачными.

Типы лазеров

В зависимости от вида активной среды и способа ее возбуждения лазеры несколько условно можно разделить на несколько типов — твердотельные, жидкостные, газовые, полупроводниковые, в каждом из которых имеются свои особенности, связанные с конструкцией, способом возбуждения и т. п. Отдельное место занимают т. н. квантовые усилители — лазеры, состоящие из активной среды и системы накачки, но без резонатора. Усилитель ставится на выходе лазера; его импульс вызывает индуцированную генерацию в активной среде усилителя, приводящее в росту энергии излучения.

Твердотельные лазеры

Рабочим веществом этих лазеров служат кристаллы или стекла, активированные посторонними ионами. Широко используются лазеры на кристалле рубина — оксида алюминия Al2O3, в котором около 0,05% атомов алюминия замещены ионами хрома Cr3+, на алюмоиттриевом гранате Y3Al5O12), на стеклах с примесью ионов неодима Nd3+, тербия Tb3+, иттербия Yb3+ и др. Вынужденное излучение различных частот дают более 250 кристаллов и около 20 стекол. Для их накачки используют лампы вспышки. Твердотельные лазеры работают как правило в импульсном режиме с частотой повторения импульсов от долей герца до десятков мегагерц. Энергия отдельного импульса достигает нескольких джоулей.

Газовые лазеры

Источником вынужденного излучения в газах служат возбужденные нейтральные атомы, молекулы или слабоионизованная тлеющим электрическим разрядом плазма. Число возникающих в столбе разряда электрон-ионных пар в точности компенсирует потери заряженных частиц на стенках газоразрядной трубки. Поэтому количество возбужденных атомов постоянно, а их излучение как правило непрерывно. Поскольку газовая среда весьма однородна, световой луч в ней рассеивается слабо и на выходе расходится очень мало. Мощность излучения газовых лазеров в зависимости от типа и конструкции может составлять от милливатт до десятков киловатт. Семейство газовых лазеров наиболее многочисленно.

Лазеры на нейтральных атомах. Наиболее распространены лазеры на смеси гелия и неона (10:1), дающие непрерывное излучение в красной области ( = 0,6328 нм). К настоящему времени получена генерация свыше 450 частот от 34 элементов.

Ионные лазеры. Инверсная населенность создается электрическим разрядом. Наиболее мощное излучение (сотни Вт) получено на ионах Ar2+ ( = 0,4880; 0,5145 мкм, сине-зеленая область), Kr2+ ( = 0,5682; 0,6471 мкм, желто-красная область), Kr3+, Ne2+ (УФ-область) и др. Излучение получено на ионах 29 элементов.

Молекулярные лазеры. Обладают высокой эффективностью (КПД до 25%) и мощностью (до десятков кВт в непрерывном режиме и десятков кДж в импульсном); излучают в ИК-диапазоне. Инверсная населенность создается УФ-излучением или электронным пучком. Наиболее распространены лазеры на CO2, H2O, N2. Лазеры на парах димера серы S2 обладают уникальной особенностью: за счет большого числа метастабильных уровней эта молекула излучает одновременно на 15 длинах волн видимого диапазона. Поэтому луч лазера на S2 кажется белым.

Газодинамические лазеры. Разновидность молекулярных газовых лазеров; представляет собой некое подобие реактивного двигателя, в камере сгорания которого сжигают углеводородное топливо. Активной средой в них служит многокомпонентная газовая смесь, нагретая свыше 1000оС и разогнанная до сверхзвуковой скорости. Струя раскаленного газа движется между зеркалами оптического резонатора; инверсная населенность создается за счет адиабатического охлаждения газа, излучение происходит поперек струи. Наиболее мощные лазеры на CO2 работают в ИК диапазоне ( = 10,6 мкм), генерируя в непрерывном режиме излучение мощностью до сотен киловатт.

Лазеры на парах металлов. Ионы и атомы 27 металлов обладают удобной для создания инверсной населенности структурой энергетических уровней. Лазеры на парах Cu излучают на длинах волн 510,4 и 578,2 нм (зеленый свет) со средней мощностью свыше 40 Вт. Лазеры на парах металлов имеют очень высокий коэффициент усиления.

Химические лазеры. Газовые лазеры с инверсной населенностью за счет экзотермических химических реакций, продукты которых образуются в возбужденном состоянии. Лазеры работают как в импульсном, так и в непрерывном режиме; излучение лежит в области дальнего ИК-излучения. Наибольшую мощность излучения обеспечивает реакция фтора с молекулярным водородом (в импульсном режиме — свыше 2 кДж при длительности импульса имп 30 нс; в непрерывном — несколько кВт).

Эксимерные лазеры. Газовые лазеры, работающие на молекулах, существующих только в возбужденном состоянии (эксимерных) — короткоживущие соединения инертных газов друг с другом, с галогенами или с кислородом (например, Ar2, KrCl, XeO и т. п.). Лазеры излучают импульсы в видимой или УФ области спектра с частотой повторения до 104 Гц со средней мощностью несколько десятков ватт.

Жидкостные лазеры

Их активной средой служат растворы органических соединений, комплексных соединений редкоземельных элементов (Nd, Eu), неорганические жидкости. Эти материалы в определенной мере сочетают преимущества твердых сред (высокая плотность) и газов (большая однородность). При необходимости рабочие параметры среды поддерживают, прокачивая жидкость в процессе работы через холодильник и фильтр. Инверсная населенность создается облучением кюветы с жидкостью светом лазера или газоразрядной лампы.

Лазеры на красителях — наиболее распространенный тип жидкостных лазеров. Активной средой служат органические красители на основе бензола и ряда других соединений. Мощность излучения достигает десятков ватт, длина волны может меняться в пределах от 322 до 1260 нм простой заменой кюветы с раствором. Лазеры на красителях генерируют как непрерывное излучение, так и последовательности ультракоротких импульсов длительностью до 210-13с.

Полупроводниковые лазеры

Активной средой лазеров служат полупроводниковые кристаллы (GaAs, InSb, PlS и др.). В отличии от всех других активных сред, уровни энергии в которых дискретны и поэтому генерируют монохроматичное излучение, полупроводники имеют довольно широкие энергетические зоны; их излучение происходит в широком диапазоне длин волн и обладает малой когерентностью. В активной среде движутся либо избыточные электроны ( n-проводимость, от англ. negativ — отрицательный) либо дырки, их нехватка ( p-проводимость, от positiv — положительный). При их рекомбинации в слое p- n-перехода энергия электрического тока непосредственно преобразуется в излучение.

Накачка производится электрическим током, пучками быстрых электронов, световым потоком. Лазеры имеют очень высокий КПД (до 50%, а отдельные модели — около 100%) и большой коэффициент усиления. Благодаря этому размеры активного элемента лазеров исключительно малы (менее 1 мм). Широкий набор полупроводниковых материалов дают возможность получать излучение в диапазоне длин волн от 0,3 до 40 мкм. Лазеры разных типов работают и в непрерывном, и в импульсном режиме, развивая мощность от долей мВт до 1 МВт (только в импульсе).

Лазеры на свободных электронах

Действие лазеров основано на излучении электронов, которые колеблются под действием внешнего магнитного и/или электрического поля и перемещаются с около световой скоростью в направлении излучаемой волны. Из-за эффекта Доплера частота излучения во много раз превышает частоту колебаний электронов и попадает в диапазон длин волн от рентгеновского (менее 6 нм) до СВЧ-радиоизлучения. Наиболее коротковолновое излучение дают лазеры, в которых колебательные движения электронам сообщает поле мощной электромагнитной волны (комптоновский лазер или скаттрон) или периодическое поле т. н. ондулятора (предложен академиком В. Л. Гинзбургом в 1947 г.). Возможны и другие способы получения вынужденного излучения — вращение электронов в однородном магнитном поле (т. н. циклотронный резонанс), колебания в неоднородном электростатическом поле, различные виды черенковского излучения. Частота излучения лазеров на свободных электронах может плавно меняться в широких пределах простым изменением скорости движения электронов.