Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ФОПИ.docx
Скачиваний:
55
Добавлен:
23.08.2019
Размер:
1.19 Mб
Скачать

Параметры

Основными параметрами акселерометра являются:

  • Пороговая чувствительность (разрешение) — величина минимального изменения кажущегося ускорения, которое способен определить прибор.

  • Смещение нуля — показания прибора при нулевом кажущемся ускорении.

  • Случайное блуждание — среднеквадратичное отклонение от смещения нуля.

  • Нелинейность — изменения зависимости между выходным сигналом и кажущимся ускорением при изменении кажущегося ускорения.

  1. Преобразования температуры в электрический сигнал

Чтобы передать информацию о температуре на расстояние, эту информацию необ-

ходимо представить в виде некоторого сигнала, удобного для измерения и передачи на

расстояние. Чаще всего используют электрический сигнал, который можно передавать по

проводам в виде напряжения или тока. Поэтому температуру обычно преобразуют в на-

пряжение (или ток), которое измеряют с помощью вольтметра (или амперметра). По-

скольку каждому значению температуры соответствует вполне определенное значение

напряжения (тока), то шкалу вольтметра (амперметра) можно проградуировать в едини-

цах температуры и по этой шкале оценивать температуру в контролируемой среде. Для

преобразования температуры в напряжение служат специальные измерительные преоб-

разователи, называемые датчиками температуры. В качестве таких датчиков используют резисторы, сопротивление которых существенно зависит от температуры (терморезисто-

ры), термопары и др.

Практически все температурные датчики, применяемые в современном производстве, используют принцип преобразования измеряемой температуры в электрические сигналы. Такое преобразование основано на том, что электрический сигнал возможно передавать с высокой скоростью на большие расстояния, в электрические же сигналы могут быть преобразованы любые физические величины. Преобразованные в цифровой код эти сигналы могут быть переданы с высокой точностью, а кроме того введены для обработки в компьютер.

Терморезисторы

Принцип действия их основан на том, что все проводники и полупроводники имеют Температурный Коэффициент Сопротивления сокращенно ТКС. Это примерно то - же, что и известный всем коэффициент температурного расширения: при нагревании тела расширяются.

Следует заметить, что все металлы обладают положительным ТКС. Другими словами электрическое сопротивление проводника увеличивается при возрастании температуры. Здесь можно вспомнить тот факт, что лампы накаливания перегорают чаще всего в момент включения, пока спираль холодная и сопротивление ее невелико. Отсюда и повышенный ток при включении. Полупроводники имеют отрицательный ТКС, при увеличении температуры их сопротивление уменьшается, но об этом будет сказано чуть выше.

Металлические терморезисторы

Казалось бы, что в качестве материала для терморезисторов возможно использовать любой проводник, однако, ряд требований предъявляемых к терморезисторам, говорит что это не так.

Прежде всего, материал для изготовления температурных датчиков, должен обладать достаточно большим ТКС, а зависимость сопротивления от температуры должна быть достаточно линейной в широком диапазоне температур. Кроме того металлический проводник должен быть инертен к воздействию окружающей среды и обеспечивать хорошую воспроизводимость свойств, что позволит производить замену датчиков не прибегая к различным тонким настройкам измерительного прибора в целом.

По всем указанным свойствам почти идеально подходит платина (если не считать высокой цены), а также медь. Такие терморезисторы в описаниях называются медные (ТСМ-Cu) и платиновые (ТСП-Pt).

Терморезисторы ТСП могут использоваться в диапазоне температур -260 - 1100°C. Если измеряемая температура находится в пределах 0 - 650°C, то датчики ТСП могут использоваться в качестве эталонных и образцовых, поскольку нестабильность градуировочной характеристики в этом диапазоне не превышает 0,001°C. К недостаткам терморезисторов ТСП можно отнести высокую стоимость и нелинейность функции преобразования в широком диапазоне температур. Поэтому точное измерение температур возможно лишь в указанном в технических данных диапазоне.

Большее распространение на практике получили более дешевые медные терморезисторы марки ТСМ, зависимость сопротивления от температуры у которых достаточно линейна. Как недостаток медных резисторов можно считать низкое удельное сопротивление, и недостаточная устойчивость к воздействию высоких температур (легкая окисляемость). Поэтому медные терморезисторы имеют предел измерения не свыше 180°C.

Для подключения датчиков типа ТСМ и ТСП используется двухпроводная линия, если удаление датчика от прибора не превышает 200м. Если это расстояние больше, то используется трехпроводная линия связи, в которой третий провод используется для компенсации сопротивления подводящих проводов. Подобные способы подключения подробно показаны в технических описаниях приборов, которые комплектуются датчиками ТСМ или ТСП.

К недостаткам рассмотренных датчиков следует отнести их низкое быстродействие: тепловая инерционность (постоянная времени) таких датчиков находится в пределах от десятков секунд до нескольких минут. Правда, изготавливаются и малоинерционные терморезисторы, постоянная времени которых не более десятых долей секунды, что достигается за счет их малых габаритов. Такие терморезисторы изготавливают из литого микропровода в стеклянной оболочке. Они высокостабильны, герметизированы, и малоинерционны. Кроме того при малых габаритах имеют сопротивление до нескольких десятков килоОм.

Рис. 28. Металлические терморезисторы