Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СРС Технология ППИМС - копия.doc
Скачиваний:
37
Добавлен:
15.08.2019
Размер:
14.06 Mб
Скачать

Полупроводниковые резисторы

Первоначально в полупроводниковых ИС применялись только диффузионные резисторы, основу которых составлял один из диффузионных слоев, расположенных в изолированном кармане. В настоящее время большое распространение получили также ионно-имплантированные резисторы.

Диффузионные резисторы. Для диффузионных резисторов чаще всего используется полоска базового р-слоя с двумя омичес­кими контактами (рисунки 23а и 23б), расположенного в коллекторном n-слое. Для изоляции резисторов на n-слой подается максимальное положительное напряжение.

Рисунок 23

Максимальное значение сопротивления RМАКС=10 KOм. Это значение можно повысить в 2-3 раза, используя не полосковую, а зигзагообразную конфигурацию резистора (рисунок 23в).

Если необходимые номиналы сопротивлений превышают 20-30 кОм, можно использовать так называемые пинч-резисторы. Струк­тура пинч-резистора показана на рисунке 23г. По сравнению с про­стейшим резистором пинч-резистор имеет меньшую площадь се­чения и большее удельное сопротивление (так как используется донная, т. е. слабо легированная часть базового р-слоя). Поэтому у пинч-резисторов удельное сопротивление слоя RS обычно составляет 2-5 кОм/ и более, в зависимости от толщины. При таком значении RS максимальное сопротивление может достигать значений 200-300 кОм даже при простейшей полосковой конфигурации.

Недостатками пинч-резисторов являются: больший разброс номиналов (до 50%) из-за сильного влияния изменения толщины р-слоя, больший температур- ный коэффициент сопротивления (0,3- 0,5%/°С) из-за меньшей степени легирования донной части р-слоя, нелинейность вольтамперной характеристики при напряжениях более 1-1,5 В. Последняя особенность вытекает из аналогии между структурами пинч-резистора и полевого транзистора. ВАХ пинч-резистора совпадает с ВАХ полевого тран­зистора, если напряжение на затворе последнего по­ложить равным нулю (поскольку у пинч-резистора слои n+ и р соединены друг с другом металлизацией). Пробивное напряжение пинч-резисторов определяется пробивным напряжением эмиттерного перехода (обычно 5-7 В).

Если необходимые номиналы сопротивлений составляют 100 Ом и менее, то использование базового слоя нецелесообразно, так как ширина резистора должна быть меньше его длины, что конструктивно трудно осуществить. Для получения резисторов с малыми номиналами сопротивлений используют низкоомный эмиттерный слой. При значениях RS= 5-15 Ом/, свой­ственных этому слою, удается получить минималь­ные сопротивления 3-5 Ом с температурным коэффициентом 0,01- 0,02%/°С.

Ионно-легированные резисторы. За последнее время все большее распространение получают ионно-легированные резисторы, которые в отличие от диффузионных резисторов получаются не диффузией, а локальной ионной имплантацией при­меси.

Структура ионно-легированного резистора такая же, как у диффузионного (рисунок 23д), но глубина имплантирован­ного р-слоя значительно меньше глубины базового слоя и составляет всего 0,2-0,3 мкм. Кроме того, ионная имплантация позво­ляет обеспечить сколь-угод­но малую концентрацию примеси в слое. Оба фак­тора способствуют получе­нию весьма высоких удель­ных сопротивлений слоя - до 10-20кОм/. При этом номиналы сопротивлении могут состав­лять сотни килоОм, ТКС меньше, чем у диффузионных резисторов, и лежит в пределах 3-5%/0С, а разброс сопротивлений не превышает ± (5-10)%.

Поскольку толщина имплантированного слоя мала, к нему труд­но осуществить омические контакты. Поэтому по краям резистивного слоя на этапе базовой диффузии формируют узкие диффузи­онные р-слои, с которыми осуществляется омический контакт обыч­ным способом.

Эквивалентная схема. Характерной особенностью любого интегрального резистора является наличие у него паразитной ем­кости относительно подложки или изолирующего кармана. В прос­тейшем диффузионном резисторе такой паразитной емкостью является барь­ерная емкость перехода между рабочим р-слоем и эпитаксиальным n-слоем кармана.

Строго говоря, совокупность резистора и паразитной емкости представляет собой распределенную RС-линию. Однако для приближенных расчетов удобнее пользоваться эквивалентными схемами с сосредоточенными постоянными: П-образной или Т-образной (рисунок 23е). На этой схеме R - сопротивление резистора, СП - усредненная емкость перехода. RC- цепочка снижает частотные свойства и увеличивает переходные процессы в схеме.

Рассмотренные эквивалентные схемы действительны и для дру­гих вариантов резисторов: когда рабочими являются змиттерный или коллекторный слой, а также при диэлектрической изоляции элементов. Однако количественные результаты оказываются раз­ными. Например, при использовании диэлектрической изоляции по­стоянная времени может быть в несколько раз меньше.

Полупроводниковые конденсаторы

В биполярных полупроводниковых ИМС роль конденсаторов иг­рают обратно смещенные р-n переходы. У таких конденсаторов хотя бы один из слоев является диффузионным, поэтому их называют диффузионными конденсаторами.

Диффузионный конденсатор. Типичная структура диффузионного конденсатора, в котором используется переход коллектор - база, показана на рисунке 24а. Емкость такого конденсато­ра в общем случае имеет вид:

С = C0S,

где С0- удельная емкость р-n перехода, S-площадь конденсатора. Опти­мальной, конфигурацией является форма близкая к квадрату.

Например, если C0= 150 пФ/мм2 и С =100 пФ, то S 0,8 мм. Как ви­дим, размеры конденсатора получи­лись сравнимыми с размерами кристалла.

Используя не коллекторный, а эмиттерный р-n переход, можно обеспечить в 5-7 раз большие значения максимальной ем­кости. Это объясняется большей удельной емкостью эмиттерного перехода, поскольку он образован слоями с более высокой концентрацией, а, следовательно, меньшей толщиной р-n перехода. Возможно совместное использование эмиттерного и коллекторного переходов.

Основные параметры диффузионного конденсатора приведены в таблице 3 для обоих вариантов конденсаторов - с использованием коллекторного и эмиттерного переходов. Как видим, основное преимущество при исполь­зовании эмиттерного перехода - большие значения максималь­ной емкости. По пробивному напряжению этот вариант уступает варианту с использованием коллекторного перехода.

Рисунок 24

Эквивалентная схема конденсатора приведена на рисунке 24б.

Таблица 3

Тип

С0,

пФ/мм2

, %

ТКЕ,

%/0С

UПР,

В

Q (1 МГц)

конденсатора

Переход БК

150

±20

-0,1

50

5-10

Переход БЭ

1000

±20

-0,1

7

5-10

МОП-стр-ра

300

±25

0,02

20

100

Необходимым условием для нормальной работы конденсатора является обратное смещение р-n перехода.

МОП-конденсатор. Интегральным конденсатором, прин­ципиально отличным от диффузионного, является МОП-конденсатор. Его типич­ная структура показана на рисунке 24в. Здесь над эмиттерным n+- сло­ем с помощью дополнительных технологических процессов выра­щен слой тонкого (0,08-0,12 мкм) окисла. В дальнейшем, при осуществлении металлической разводки, на этот слой напыляется алюминиевая верхняя обкладка конденсатора. Нижней обкладкой служит эмиттерный n+ - слой.

Основные параметры МОП-конденсаторов приведены в таблице 3. Добротность выше, так как сопротивление r значительно ниже из-за n+-слоя.

Важным преимуществом МОП-конденсаторов по сравнению с диффузионным является то, что они работают при любой полярности на­пряжения, т. е. аналогичны «обычному» конденсатору. Однако МОП-конденсатор, как и диффузионный, тоже нелинейный. Паразитная емкость МОП-конденсаторов учитывается с помощью уже известной эквивалентной схемы (рисунок 24г), где под емкостью СП следует понимать емкость между n-карманом и р-подложкой.

В заключение заметим, что в МОП-транзисторных ИМС, в отли­чие от биполярных, изготовление МОП-конденсаторов не связано с дополнительными технологическими процессами: тонкий окисел для конденсаторов получается на том же этапе, что и тонкий оки­сел под затвором, а низкоомный полупроводниковый слой - на этапе легирования истока и стока. Изолирующие карманы в МОП-технологии, как известно, отсутствуют.