Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СРС Технология ППИМС - копия.doc
Скачиваний:
35
Добавлен:
15.08.2019
Размер:
14.06 Mб
Скачать

Технологические основы создания гибридных интегральных микросхем Методы получения тонких пленок

Существует несколько основных методов нанесения тонких пленок на подложку и друг на друга: термическое (вакуумное) и ионо-плазменное напыление, которое имеет две разновидности: катодное напыление и собственно ионно-плазменное.

Метод термического (термовакуумного) напыления

Принцип этого метода напыления показан на рисунке рис.1,а. Металлический или стеклянный колпак 1 расположен на опорной плите 2. Между ними находится проклад­ка 3, обеспечивающая поддержание ва­куума после откачки воздуха из подколпачного пространства. Подложка 4, на которую проводится напыление, закреплена на держателе 5. К держателю примыкает нагреватель 6 (напыление проводится на нагретую подложку). Испари­тель 7 включает в себя нагреватель и источник напыляемого вещества. Пово­ротная заслонка 8 перекрывает поток паров от испарителя к подложке: напы­ление длится в течение времени, когда заслонка открыта.

Нагреватель обычно представляет собой нить или спираль из тугоплавко­го металла (вольфрам, молибден и др.), через которую пропускается достаточно большой ток. Источник напыляемого вещества связывается с нагревателем по-разному: в виде скобок («гусариков»), навешиваемых на нить накала; в виде небольших стержней, охватываемых спиралью, в виде порошка, засыпанного в

а)

б)

в)

Рисунок 1

тигель, нагреваемый спиралью, и т. п. Вместо нитей накала в по­следнее время используют нагрев с помощью электронного луча или луча лазера.

На подложке создаются наиболее благоприятные условия для конденсации паров, хотя частично конденсация происходит и на стенках колпака. Слишком низкая температура подложки пре­пятствует равномерному распределению адсорбируемых атомов: они группируются в «островки» разной толщины, часто не связанные друг с другом. Наоборот, слишком высокая температура под­ложки приводит к отрыву только что осевших атомов, к их «реиспарению». Поэтому для получения качественной пленки температура подложки должна лежать в некоторых оптимальных пределах (обычно 200-400° С). Скорость роста пленок в зависимости от ряда факторов ( температура подложки, рас­стояние от испарителя до подложки, тип напыляемого материала и др.) лежит в пределах от десятых долей до десятков нанометров в секунду.

Для того чтобы атомы напыляемого материала, летящие от испарителя к подложке, испытывали минимальное количество столкновений с атомами оста­точного газа и тем самым минимальное рассеяние, в подколпачном пространстве нужно обеспечивать достаточно высокий вакуум. Критерием необходимого вакуума может служить условие, чтобы средняя длина свободного пробега атомов в несколько раз превышала расстояние между испарителем и подложкой. Однако этого условия часто недостаточно, так как любое количество остаточного газа чревато загрязнением напыляемой пленки и изменением ее свойств. Поэтому в принципе вакуум в установках термического напыления должен быть как можно более высоким. В настоящее время вакуум ниже 10-6 мм рт. ст. считается неприемлемым, а в ряде первоклассных напылительных установок он доведен до 10-11 мм рт. ст.

Достоинства метода:

  • его простота;

  • возможность получения исключительно чистых пленок (при высоком вакууме).

Недостатки метода:

  • трудность напыления тугоплавких материалов;

  • труд­ность (а иногда невозможность) воспроизведения на подложке хи­мического состава испаряемого вещества.

Последнее объясняется тем, что при высокой температуре химические соединения диссо­циируют, а их составляющие конденсируются на подложке раз­дельно. Естественно, имеется вероятность того, что новая ком­бинация атомов на подложке не будет соответствовать структуре исходной молекулы.

Метод катодного напыления

Схема этого метода показана на рисунке 1,б. Здесь большинство компонентов те же, что и на рисунке а. Однако отсутствует испаритель; его место по расположению (и по функции) занимает катод 6, который либо состоит из напыляемого вещества, либо электрически контактирует с ним. Роль анода вы­полняет подложка вместе с держателем.

Подколпачное пространство сначала откачивают до 10-5-10-6 мм рт. ст., а затем в него вводят некоторое количество очищенного инертного газа (чаще всего аргона), так что создает­ся давление 10-1 - 10-2 мм рт, ст. При подаче высокого отрицательного (2-3 кВ) напряжения на катод 6 (анод заземлен из соображений электробез­опасности) в пространстве анод - катод возникает аномальный тлеющий разряд, сопровождающийся образованием электронно-ионной плазмы.

Специфика аномального тлеющего разряда состоит в том, что в прикатодном пространстве образуется настолько сильное электри­ческое поле, что положительные ионы газа, ускоряемые этим полем и бом­бардирующие катод, выбивают из него не только электроны (необходи­мые для поддержания разряда), но и нейтральные атомы. Тем самым катод постепенно разрушается. В обычных газоразрядных приборах разрушение катода недопустимо (поэтому в них используется нормальный тлеющий разряд), но в данном случае выбивание атомов из катода являет­ся полезным процессом, аналогичным испарению.

Достоинством катодно­го напыления по сравнению с терми­ческим является то, что распыление катода не связано с высокой температурой. Соответственно отпадают трудности при напылении тугоплавких материалов и химических соединений (см. последний абзац преды­дущего раздела).

Недостаток метода состоит в том, что катод (т. е. напыляемый материал), будучи элементом газоразрядной цепи, должен обладать высокой электропроводностью. Такое требование ограничивает ассорти­мент напыляемых материалов. В частности, оказывается невозмож­ным напыление диэлектриков, в том числе многих окислов и дру­гих химических соединений, распространенных в технологии полу­проводниковых приборов.

Это ограничение в значительной мере устраняется при исполь­зовании так называемого реактивного (или химического) катодного напыления.

Метод реактивного (химического) катодного напыления

Особенность данного метода состоит в добавлении к основной массе инертного газа небольшого количества активных газов, способных образовывать необходимые химические соединения с рас­пыляемым материалом катода. Например, примешивая к аргону кис­лород, можно вырастить на подложке пленку окисла. Примешивая азот или моноокись углерода, можно получить нитриды или кар­биды соответствующих металлов. В зависимости от парциального давления активного газа химическая реакция может происходить либо на катоде (и тогда на подложке осаждается уже готовое соединение), либо на подложке - аноде.

Достоинства метода: возможность напыления диэлектриков, в том числе многих окислов и дру­гих химических соединений, распространенных в технологии полу­проводниковых приборов.

Недостатками катодного напыления в целом являются:

  • неко­торая загрязненность пленок (из-за использования сравнительно низкого вакуума) меньшая по сравнению с термическим методом скорость напыления (по той же причине);

  • сложность конт­роля процессов.

Ионно-плазменное напыление.

Схема этого метода пока­зана на рисунке 1,в. Главная его особенность по сравнению с методом катодного напыления состоит в том, что в промежутке между электродом 8 - мишенью (с нанесенным на нее напыляе­мым материалом) и подложкой 4 дейст­вует независимый, «дежурный» газовый разряд. Разряд имеет место между электродами 6 и 7, причем тип разряда - несамостоятельный дуговой. Для этого типа разряда характерны: наличие специального ис­точника электронов в виде накаливае­мого катода 6, низкие рабочие напря­жения (десятки вольт) и большая плот­ность электронно-ионной плазмы. Подколпачное пространство, как и при катодном напылении, заполнено инертным газом, но при более низком давлении (10-3 - 10-4 мм рт. ст.).

Процесс напыления состоит в следующем. На мишень относи­тельно плазмы (практически - относительно заземленного анода 7) подается отрицательный потенциал (2-3 кВ), достаточный для возникновения аномального тлеющего разряда и интенсивной бомбардировки мишени положительными ионами плазмы. Выби­ваемые атомы мишени попадают на подложку и осаждаются на ней. Таким образом, принципиальных различий между процессами ка­тодного и ионно-плазменного напыления нет. Различаются лишь конструкции установок: их называют соответственно двух- и трех - электродными.

Начало и конец процесса напыления определяются подачей и отключением напряжения на мишени. Если предусмотреть механи­ческую заслонку (см. рис. а), то ее наличие позволяет реализо­вать важную дополнительную возможность: если до начала напы­ления закрыть заслонку и подать отрицательный потенциал на мишень, то будет иметь место ионная очистка мишени. Такая очистка полезна для повышения качества напыляемой пленки. Аналогичную очистку можно проводить на подложке, подавая на нее (до напыления пленки) также отрицательный потенциал.

При напылении диэлектрических пленок возникает затруднение, связанное с накоплением на мишени положительного заряда, препятствующего дальнейшей ионной бомбардировке. Это затруднение преодолевается путем использования так называемого высокочастот­ного ионо-плазменного напыления. В этом случае на мишень на­ряду с отрицательным постоянным напряжением подается переменное напряжение высокой частоты (около 15 МГц) с амплитудой, несколько превышающей постоянное напря­жение. Тогда во время большей части периода результирующее на­пряжение отрицательно; при этом происходит обычный процесс распыления мишени и на ней накапливается положительный заряд. Однако во время небольшой части периода результирующее напря­жение положительно; при этом мишень бомбардируется элект­ронами из плазмы, т. е. распыления не происходит, но зато ком­пенсируется накопленный положительный заряд.

Вариант реактивного (химического) ионно-плазменного напы­ления открывает те же возможности получения окислов, нитридов и других соединений, что и реактивное катодное напыление (см. пре­дыдущий раздел).

Преимущества собственно ионно-плазменного метода по срав­нению с катодным состоят в большей скорости напыления и большей гибкости процесса (возможность ионной очистки, возможность от­ключения рабочей цепи без прерывания разряда и др.). Кроме того, на качестве пленок сказывается более высокий вакуум.

Существуют другие методы нанесения пленок, например, анодирование и электрохимическое осаждение .