Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
691433_C2122_shpargalki_otvety_na_ekzamen_po_ek....doc
Скачиваний:
20
Добавлен:
06.08.2019
Размер:
821.25 Кб
Скачать
  1. Растровая (сканирующая) микроскопия.

В растровых электронных микроскопах (РЭМ; рис. 2) электронный луч, сжатый магн. линзами в тонкий (1-10 нм) зонд, сканирует пов-сть образца, формируя на ней растр из неск. тыс. параллельных линий. Возникающее при электронной бомбардировке пов-сти вторичные излучения (вторичная эмиссия электронов, оже-электронная эмиссия и др.) регистрируются разл. детекторами и преобразуются в видеосигналы, модулирующие электронный луч в ЭЛТ. Развертки лучей в колонне РЭМ и в ЭЛТ синхронны, поэтому на экране ЭЛТ появляется изображение, представляющее собой картину распределения интенсивности одного из вторичных излучений по сканируемой площади объекта. Увеличение РЭМ определяется как М = L/l, где L и l - длины линий сканирования на экране ЭЛТ и на пов-сти образца.

ыбор регистрируемого вторичного излучения обусловлен задачей исследования. Основной режим работы РЭМ - регистрация вторичных электронов (ВЭ). Поскольку интенсивность эмиссии ВЭ сильно зависит от угла падения электронного луча на пов-сть, получаемое изображение весьма близко к обычному макроскопич. изображению рельефа объекта, освещаемого со всех сторон рассеянным светом; иначе говоря, формируется топографич. контраст. Эмиссия ВЭ отличается наиб. интенсивностью по сравнению с др. вторичными излучениями. Кроме того, в этом режиме достигается макс. разрешение.

При исследовании неоднородных по составу пов-стей на топографич. изображение ВЭ накладывается дополнит. распределение яркостей, зависящее от ср. атомного номера Z в-ва образца на каждом микроучастке (т. наз. композиционный, или Z-контраст), к-рый проявляется сильнее, если регистрировать не вторичные, а упругорассеянные электроны. Этот режим применяют при исследовании шлифов металлич. сплавов минералов, композиционных материалов и др. объектов, когда топографич. контраст отсутствует и нужно установить композиционную неоднородность пов-сти.

Тонкопленочные образцы (до 1 мкм) просвечиваются электронным лучом насквозь и прошедшие электроны регистрируются детектором, расположенным под объектом. Изображения, получаемые в этом режиме, иногда более информативны, чем обычные ТЭМ-изображения, т.к. свободны от хроматич. аберрации.

В техн. исследованиях используется также регистрация поглощенных электронов в сочетании с приложением рабочих напряжений к изучаемому транзистору или интегральной схеме. Это позволяет получать изображение, отвечающее распределению электрич. потенциалов, и т. обр. выявлять микродефекты в элементах схемы. При этом можно прерывать первичный электронный луч с высокой частотой и визуализировать прохождение по схеме высокочастотных сигналов.

С помощью соответствующих детекторных систем и спектрометров в РЭМ можно регистрировать электромагн. излучения: катодолюминесценцию, тормозное и характеристич. рентгеновские излучения, а также оже-электроны. Получаемые при этом изображения и спектры дают количеств, информацию о локальном элементном составе поверхностных слоев образца и широко применяются в материаловедении (см. Электронно-зондовые методы).

Для изучения структуры пов-сти посредством РЭМ к образцу предъявляется ряд требований. Прежде всего, его пов-сть должна быть электропроводящей, чтобы исключить помехи за счет накопления поверхностного заряда при сканировании. Кроме того, нужно всемерно повышать отношение сигнал/шум, к-рое наряду с параметрами оптич. системы определяет разрешение. Поэтому перед исследованием на диэлектрич. пов-сти путем вакуумного испарения или ионного распыления наносят тонкую (15-20 нм) однородную пленку металла с высоким коэф. вторичной электронной эмиссии (Au, Au-Pd, Pt-Pd). Биол. объекты, содержащие, как правило, большое кол-во воды, перед нанесением покрытия необходимо зафиксировать спец. хим. обработкой и высушить, сохранив естеств. микрорельеф пов-сти (сушка в критич. точке с использованием сжиженных СО2 и N2O, хладонов или вакуумнокриогенными методами).

Разрешающая способность РЭМ определяется многими факторами, зависящими как от конструкции прибора, так и от природы исследуемого объекта. Если образец электро- и теплопроводен, однороден по составу и не обладает приповерхностной пористостью, в РЭМ с вольфрамовыми электродами достигается разрешение 5-7 нм, в РЭМ с электронными пушками на полевой эмиссии - 1,0-1,5 нм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]