Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоргалки.doc
Скачиваний:
9
Добавлен:
29.07.2019
Размер:
133.63 Кб
Скачать

Соединительная ткань со специальными свойствами.

Ретикулярная ткань. Содержит ретикулярные клетки, которые своими отростками соединяются и образуют сеть. Вдоль отростков, углубляясь в цитолемму, идут ретикулярные волокна. Ретикулярная ткань образует строму кровеносных органов и очень хорошо регенерирует. Жировая ткань. У взрослых  белый жир. Представлен скоплением жировых клеток, которые образуют дольки. Они отделены прослойкой соединительной ткани, которая содержит кровеносные капилляры. Они наполнены нейтральным жиром. Он легко усваивается, но трудно отдается. Жировая ткань образует подкожную жировую клетчатку, жировые капсулы вокруг органов. Эта ткань является источником воды, энергии, пластического материала. Бурый жир встречается в эмбриогенезе и у новорожденных. Он более энергоемкий. Пигментная ткань скопление пигментных клеток. Слизистая ткань. В норме – только в эмбриогенезе и в пуповине. В ней мало клеток, мало коллагеновых волокон, хорошо выражено полужидкое основное вещество.

Скелетная ткань подразделяется на: Хрящевую, Скелетную

Плотные соединительные ткани содержат меньше основного вещества, а в межклеточном веществе преобладают волокнистые структуры. В них мало клеток и менее разнообразный клеточный состав. Волокна преимущественно коллагеновые, плотно располагаются друг к другу. В плотной неоформленной соединительной ткани коллагеновые волокна образуют пучки, между волокнами имеются фибробласты, но преобладают фиброциты. Пучки коллагеновых волокон переплетаются между собой, а между пучками лежат тонкие прослойки рыхлой соединительной ткани с капиллярами. Эта ткань образует сетчатый слой кожи. Способность регенерации ниже, чем в рыхлой.

Плотная оформленная соединительная ткань.

Плотная оформленная соединительная ткань образует фиброзные мембраны, связки и сухожилия, при этом все волокна идут параллельно и плотно. Сухожилия содержат коллагеновые волокна. Каждое отдельное волокно составляет пучок первого порядка, между ними находятся фиброциты. Эти волокна образуют пучок второго порядка. Между пучками второго порядка находятся прослойки соединительной ткани с кровеносными капиллярами, которые образуют эндотеноний. Пучки второго порядка объединяются в пучки третьего порядка, которые отделяются друг от друга крупной прослойкой соединительной ткани  перитенонием. Способность к регенерации  низкая.

Хрящевая ткань в основном выполняет трофическую функцию. В ней снижено содержание воды, повышено содержание минеральных солей и органических веществ. Эти ткани более плотные и упругие, все содержат клетки и межклеточное вещество. Клетки хрящевых тканей одинаковы и называются – хондробласты. Они имеют веретеновидную или овальную форму с базофильной цитоплазмой, развитым белоксинтезирующим аппаратом, часть из них являются стволовыми и способны пролеферировать. Хондробласты вырабатывают межклеточное вещество и дифференцируются в молодые хондроциты. Это клетки небольшой овальной формы, сохраняют способность к пролиферации и вырабатывают межклеточное вещество, со временем превращаются в зрелые хондроциты. Они более крупные, со временем утрачивают способность к пролиферации. Все эти клетки располагаются в полостях, которые по объему соответствуют их размеру. Полость ограничена капсулой, состоящей из коллагеновых волокон. В ней могут накапливается несколько хондроцитов, то образуются изогенные группы клеток.

Хрящевые ткани отличаются друг от друга строением межклеточного вещества, прежде всего строением межклеточных волокон, способных к обызвествлению. Различают гиалиновую, эластическую и волокнистую хрящевую ткань.

Гиалиновый хрящ наиболее распространен (сочленение ребер с грудиной, в стенке воздухоносных путей, при образовании суставных поверхностей). Снаружи покрыта надхрящницей (перихондрием). Наружный слой образован более плотной волокнистой соединительной тканью, внутренний более рыхлой. Внутренняя оболочка содержит фибробласты и хондробласты. В оболочке располагаются кровеносные сосуды. Хондробласты вырабатывают межклеточное вещество. За счет этого идет рост хряща снаружи. Глубже располагается собственное вещество хряща. В его периферической части находятся молодые хондроциты. Они также делятся, вырабатывают и выделяют межклеточное вещество и определяют рост хряща изнутри. В средней части вещества хряща находятся зрелые хондроциты, а в центре располагаются изогенные группы хондроцитов. Между клетками находится межклеточное вещество, содержащее коллагеновые волокна и основное вещество.Кровеносных сосудов в хряще нет. По мере старения происходит отложение солей кальция, идет обызвествление, хрящ становится хрупким и ломким. Эластический хрящ входит в состав стенки воздухоносных путей, образует основу ушной раковины. Имеет сходное строение, но имеется ряд особенностей. В межклеточном веществе располагаются эластические волокна, межклеточное вещество оксифильно все время, в норме не обызвествляется. Волокнистый хрящ встречается в зоне соединения сухожилия и кости, в межпозвоночных дисках. С одной стороны хрящ образован плотной оформленной соединительной тканью, а с другой – гиалиновым хрящом. С возрастом волокнистый хрящ обызвествляется. Хрящевые ткани все время регенерируют.

Костные ткани обладают высокой степенью минерализации, твердые, прочные и формируют кость. Очень низкое содержание воды, из органических веществ резко преобладают белки. Различают:

Грубоволокнистую скелетную ткань. Она присутствует в эмбриогенезе, а у взрослых образует швы, и соединения костей черепа.

Пластинчатую костную ткань.

Костные ткани содержат клетки, вырабатывающие межклеточное вещество, в которых резко преобладают коллагеновые волокна. Небольшой объем занимает основное вещество. Его клеточный состав одинаков, представлен остеобластами – клетки образующие костную ткань. Это крупные, округлой формы клетки с круглым ядром, вырабатывают межклеточное вещество. Количество этих клеток велико в растущем организме, при регенерации. Также к клеткам костной ткани относят остеоциты. Они имеют тонкое тело и длинные тонкие отростки. Также имеются остеокласты – клетки, разрушающие костную ткань. Они развиваются из моноцитов крови и относятся к макрофагической системе. Это крупные, многоядерные клетки с хорошо развитым лизосомным аппаратом.

Костные ткани различаются строением межклеточного вещества. В грубоволокнистой костной ткани коллагеновые волокна формируют пучки, которые переплетаются между собой. Между волокнами располагаются остеоциты, но у взрослого человека тонких костей мало. В пластинчатой костной ткани коллагеновые волокна идут параллельно друг к другу, плотно склеены между собой и образуют костные пластинки. Прочность костной ткани обеспечивается тем, что пластинки идут под разным углом. Между пластинками находятся остеоциты. Их отростки пронизывают костные пластинки во всех участках. Пластинчатая костная ткань образует компактную кость. Она содержит остеоны и губчатую часть, где остеоны отсутствуют.

Диафиз трубчатой кости построен из пластинчатой костной ткани. Снаружи располагается слой крупных костных пластинок, которые идут концентрически по диаметру всей кости. Далее выделяют внутренний слой общих пластинок, а изнутри лежит эндоост, состоящий из рыхлой соединительной ткани, содержащий кровеносные сосуды. Между ними находится широкий средний остеогенный слой. Он содержит остеоны  структурно-функциональные единицы кости. Остеоны располагаются по оси диафиза и состоит из концентрических костных пластинок разного диаметра. Внутри каждого остеона располагается канал остеона, в нем содержится кровеносный сосуд. Между остеонами располагаются остатки костных пластинок  это остатки остеонов. В норме у человека остеоны постепенно разрушаются, и образуются новые остеоны. Между костными пластинками всех слоев располагаются остеоциты, а их отростками пронизываются костные пластинки и создается разветвленная сеть канальцев. Кровеносные сосуды надкостницы по прободающим каналам поступают в остеоны, идут по их каналам, анастомозируют между собой и доставляют питательные вещества в канал остеона. Оттуда по костным канальцам фосфаты кальция очень быстро распространяются во все участки кости.

Прямой остеогенез  процесс образования плоских костей непосредственно из мезенхимы. Мезенхимные клетки группируясь образуют скелетогенные островки. Они превращаются в остеобласты, вырабатывают межклеточное вещество, замуровывают себя и превращаются в остеоциты. Таким способом формируются костные балки. На их поверхности вырабатываются остеобласты, происходит кальцинация межклеточного вещества. Костные балки построены из грубоволокнистой костной ткани. Костные балки врастают в кровеносные сосуды. С помощью остеобластов разрушается грубоволокнистая костная ткань и по мере врастания кровеносных сосудов она замещается пластинчатой костной тканью с помощью остеобластов. Так развиваются пластинчатые кости.

Непрямой остеогенез. Трубчатая кость развивается на месте гиалинового хряща. На втором месяце эмбриогенеза закладывается зачаток из гиалинового хряща. Это будущая кость небольшого размера. Снаружи она покрыта надхрящницей, затем в области диафиза между надхрящницей и веществом хряща из грубоволокнистой костной ткани образуется костная манжета. Она полностью окружает диафиз и нарушает питание хрящевой ткани диафиза. Часть хряща в диафизе разрушается, оставшиеся участки хряща обызвествляются. Надхрящница превращается в надкостницу и из нее внутрь врастают кровеносные сосуды. Они пронизывают костную манжету, при этом ее грубоволокнистая костная ткань замещается пластинчатой, сосуды глубже врастают в зону хряща, при этом остеокласты разрушают хрящ, а остеобласты вокруг остатков обызвествляют хрящ, образуя эндохондральную кость из пластинчатой костной ткани. Обызвестившийся хрящ полностью разрушается, эндохондральная кость разрастается, соединяется с перихондральной костью, остеокласты разрушают костную ткань в середине диафиза и образуют костномозговую полость. В ней из мезенхимных клеток закладывается красный костный мозг. Эпифиз представлен гиалиновым хрящом. Он позднее подвергается окостенению. А между эпифизом и диафизом располагается метоэпифизарная пластинка  зона роста (за счет нее кости растут в длину). Здесь выделяют слой пузырчатых клеток, столбчатый слой и пограничный слой (близок по строению к гиалиновому хрящу). Это пластинка окостеневает в 18-20 лет.

Различают миелиновые и безмиелиновые волокна, которые отличают строением глиальной оболочки. Миелиновые  это толстые нервные волокна, которые располагаются в основном в соматической нервной системе. В центре такого волокна идет один осевой цилиндр и глиальная оболочка, образованная леммоцитами, которые формируют цепочку или тяж леммоцитов. На границе между смежными лемооцитами эта оболочка тонкая, она называется узловым перехватом, это место повышенной чувствительности, уязвимости волокна. Участок волокна расположенный между смежными узловыми перехватами называется межузловым сегментом. В глиальной оболочке выделяют: Внутренний и Наружный или периферический слой, Снаружи вокруг волокна располагается толстая базальная мембрана. Участками в миелиновом слое мембраны располагаются рыхло, отходят друг от друга, образуются более светлые насечки миелина. По миелиновым нервным волокнам очень высокая скорость проведения нервногг импульса (5-120 м/с). Безмиелиновые нервные волокна располагаются в вегетативной нервной системе. Глиальная оболочка представлена цепочкой леммоцитов, ядро располагается в центре волокна, а осевой цилиндр располагается на периферии волокна и отграничен от окружающей ткани только мезаксоном, без закручивания. То есть, за счет прогибания цитолеммы леммоцита образуется глиальная оболочка 10-20 осевых цилиндров. Это волокна кабельного типа, скорость провдения нервного импульса невелика (2-3м/с).

Нервное окончание – контакты между отростком нейрона и какой-либо тканью. Синапсы бывают химическими и электрическими. Электрические характерны для низших животных и человека в эмбриональном развитии. Электрические синапсы характеризуются двухсторонней проводимостью, т.е. способны пропускать нервные импульсы в ту и другую сторону. Химические синапсы характеризуются односторонней проводимостью, что обеспечивает состояние субординации в органах нервной системы. В синаптическом комплексе выделяют пресинаптическую часть, синаптическое пространство и постсинаптическую часть. Пресинаптическая часть – расширение отростка нервной клетки. Находится много митохондрий и пузырьков с веществом медиатором. В качестве медиатора выступают химические субстраты, которые способствуют проникновению в синаптическую щель и связываются с белками-рецепторами постсинаптической мембраны. Такая связь открывает ионные каналы и способствует продвижению веществ из синаптической щели в постсинаптическую часть. Направление медиатора всегда одностороннее: из пресинаптической в постсинаптическую часть. В качестве медиатора выступают – адреналин, ацетилхолин и др. Затем эти вещества разрушаются филаментами, что приводит к восстановлению исходного состояния компонентов синапса.

Синапсы обеспечивают проведение нервного импульса по рефлекторным дугам.

Гладкие мышечные ткани  широко встречаются во внутренних органах (сосуды, стенки кишечника). Структурная единица гладкой мышечной ткани  миоцит. Это клетка с заостренными концами длинной 25-50мкм и шириной 7-10мкм. Клетка иногда имеет раздвоенные концы. Такие клетки чаще встречаются в полых органах, например, в мочевом пузыре. Ядро находится в центре и имеет палочковидную форму, при сокращении клетки она штопорообразно скручивается, органеллы располагаются вокруг ядра. Имеется ЭПС, слабовыраженный аппарат Гольджи. На этапе слабой дифференцировки вырабатываются гликозаминогликаны и белок типа коллагена. Поэтому вокруг каждой клетки формируется оболочка типа сарколеммы, похожая на базальную мембрану. Сюда вплетаются волокнистые структуры, которые являются продолжением клетки. Эти клетки входят в состав эндомизия, только в местах тесного соприкосновения клеток имеются отверстия  х другой. В этом есть необходимость для передачи возбуждения от клетки к клетке. Миоциты содержат сократительные белки  актин и миозин. Актин (тонкие нити) может располагаться продольно и косо, миозин (толстые нити) может располагаться только продольно. Упорядоченного их сплетения нет, поэтому клетка при окрашивании выглядит гладкой. В местах соприкосновения актиновых и миозиновых фибрилл имеется соприкосновение их с цитолеммой. Здесь образуются уплотнения из особого белка  -актинина, винкулина. Учитывая не только продольное, но и косое расположение актиновых фибрилл, при сокращении в диаметре клетки изменения в диаметре клетки не происходит. Гладкая мышечная ткань обладает медленным типом сокращения. Передача идет от клетки к клетке, т.к. сокращение идет не к каждой клетке, а к определенным пучкам. Сокращение слабое, волнообразное, практически не подвергается усталости. Гладкая мышечная ткань не подчиняется воле, мы не можем контролировать сокращение этой ткани. Гладкая мышечная ткань хорошо регенерирует. Регенерация идет за счет внутриклеточных механизмов (особенно в матке). В некоторых органах эти клетки делятся митозом, но в органах, возникших в процессе эволюции недавно, регенерация затрудненаили осуществляется репаративно. Регенерация вообще не происходит на месте разрыва, она замещается соединительной тканью (матка, мочевой пузырь).кровоснабжение гладкой мышечной ткани происходит счет эндомизия и более выраженных прослойках соединительной ткани, образующих эпимизий и перимизий

Нервная ткань, являющаяся производным нейроэктодермы, сохранила принцип организации эпителиальных тканей, и потому состоит только из клеток. Межклеточное вещество отсутствует.

Нервная ткань представлена двумя типами клеток:

нейроны (нейроциты, невроны, нервные клетки);

клетки нейроглия.

Нейроны – это главные функционирующие клеточные элементы, выполняющие основные специфические функции нервной ткани: обеспечивают восприятие и передачу раздражений, формирую рефлекторные дуги, и обеспечивают ответные реакции организма на раздражитель.

Клетки нервной глии – это вспомогательные клетки, их основная функция – обеспечение жизнедеятельности нейронов. Выполняют защитную, разграничительную, трофическую, секреторную функции, которые направлены на функционирование главного клеточного элемента – нейрона.

Нейроны классифицируют по функции и по строению. В основе классификации – количество отростков нервных клеток.

Униполярные (одноотросчатые) – Называются нейробластами или клетками-строителями.

Псевдоуниполярные (ложноотросчатые), Содержится в спинномозговых узлах (спинальные ганглии) и являются чувствительными нейронами.

Биполярные (двуотросчатые) – имеют один аксон и один дендрит. Содержатся в коре большого мозга (в молекулярном слое коры), в сетчатке глаза, где они образуют второй нейрон цепи чувствительной части рефлекторной дуги сетчатки.

Мультиполярные (многоотросчатые) – имеют один аксон и множество дендритов. Много в сером веществе спинного мозга, в коре больших полушарий и в вегетативных нервных узлах. Аксон – отросток, по которому нервный импульс распространяется от тела нейрона к следующему нейрону или к рабочему органу (мышца, железа). Дендрит – отросток, по которому обеспечивается афферентация (поступление) нервного импульса к телу нейрона.

Функциональная классификация нейронов.

чувствительные;

ассоциативные (промежуточные);

двигательные;

нейросекреторные.

Нейрон состоит из тела и отростков. В теле находится одно ядро и органоиды общего и специального назначения. Нейроны человека в подавляющем большинстве содержат одно ядро, расположенное в центре, реже – эксцентрично. Двуядерные нейроны и тем более многоядерные встречаются крайне редко. Форма ядра нейронов округлая. В ядре имеется 1, а иногда 2-3 крупных ядрышка. В соответствии с высокой специфичностью функциональной активности нейронов они имеют специализированную плазмолемму, их цитоплазма богата органеллами. В цитоплазме представлены эндоплазматическая сеть, рибосомы, митохондрии, комплекс Гольджи, клеточный центр, лизосомы, нейротубулы и нейрофиламенты.

Скелетная мышечная ткань. В процессе эволюции она возникла после сердечной. В своем составе она имеет структурно-функциональную единицу  волокно (симпласт). В цитоплазме имеются десятки тысяч ядер. В эмбриогенезе на месте будущей мышцы из мезодермальных миотомов вычленяются клетки  миобласты. Они способны делится, то есть на этом этапе скелетная мышечная ткань имеет клеточную строение, затем состыковываясь образуют мышечные трубочки. В них начинают накапливаться белки (продукт метаболитов), которые формируют миофибриллы, причем они занимают центральное положение в мышечной трубке. Траницы между миобластами исчезают, ядра отодвигаются на периферию, формируется симпласт или мышечное волокно длинной от 10 до 12 см. часть миобластов остается в виде камбиальных клеток, но границы этих клеток при световой микроскопии плохо видны. Их ядра чуть меньше, чем ядра симпластов. Мышечное волокно по своему страению и сократительному аппарату похоже на сердечную мышечную ткань. Ядра располагаются под сарколеммой, процесс сокращения идет также, но поперечно-полосатая мышечная ткань подчиняется нашему сознанию, сокращение сильное, быстрое, быстро происходит утомление. Физиология сокращения зависит от двух типов волокон  красных и белых. Красные волокна обладают большим количеством миоглобина, сукцинатдегидрогеназы и обладает АТФ-азой медленного типа, поэтому эти волокна способны на длительную работу. Белые волокна обладают большим количеством сукцинатдегидрогеназы, но мало миоглобина, содержат АТФ-азу быстрого типа, в результате чего возникает “взрыв”, но длительная работа клетки невозможна. Во время тренировок соотношение между волокнами не меняется, а происходит гипертрофия. При повреждении мышечной ткани идет внутриклеточная регенерация. Регенерация за счет камбиальных клеток возникает только в экстренных случаях, когда камбиальные клетки превращаются в миобласты, затем формируются мышечные трубочки и формируются мышечные волокна. Возможно восстановление более древних и коротких мышц лица.

Нервная ткань в эмбриогенезе возникла последней. Закладывается на 3 неделе эмбригенеза, когда образуется нервная пластинка, которая превращается в нервный желобок, затем в нервную трубку. В стенке нервной трубки пролиферируют стволовые вентрикулярные клетки, из них образуются нейробласты  из них формируются нервные клетки, и глиобласты  из них формируются глиальные клетки  это астроциты, олигодендроциты и эпендимоциты. Таким образом, нервная ткань включает нервные и глиальные клетки. Глиоциты составляются из астроцитов, эпендимоцитов и олигодендроцитов, которые вместе составляют макроглию. Также к глиальным клеткам относится микроглия  в отличие от макроглии, она имеет мезенхимное происхождение. Глиальных клеток больше, чем нервных клеток. Они создают условия для жизнедеятельности нервных клеток и выполняют трофическую функцию, защитную функцию, секреторную функцию и опорную функцию. Глиальные клетки хорошо делятся. Эпендимоциты  это клетки призматической формы, они выстилают центральный канал спинного мозга и желудочки мозга. На апикальной поверхности имеются микроворсинки, базальная часть  конусовидная, от нее отходит длинный отросток, который пронизывает все вещество мозга и на поверхности мозга образует отграничительную мембрану (защитная функция). Эти клетки вырабатывают спинномозговую жидкость и обладают умеренной всасывательной способностью. Астроциты бывают: Плазматическиерасполагаются в сером веществе (коре, ядрах мозга). У них короткие сильно разветвленные отростки. Выполняют трофическую, защитную и изолирующую функции (отграничивают синапсы). Фиброзные  находятся в белом веществе, выполняют стромальную функцию, у них тонкие жесткие длинные слаборазветвленные отростки. Олигодендроциты  наиболее многочисленная группа глиальных клеток, мелкуие овальные клетки с угловатыми короткими отростками, образуют глиальную оболочку вокруг каждого отростка. Микроглиоциты развиваются из моноцитов крови, Это мелкие клетки с короткими угловатыми отростками. Они фагоцитируют разрушенные клетки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]