Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
токсиканты вопрос 27.doc
Скачиваний:
8
Добавлен:
08.05.2019
Размер:
929.79 Кб
Скачать

3. Осмос

Осмос - процесс перемещения растворителя через мембрану, не проницаемую для растворенного вещества, в сторону его более высокой концентрации.

Биологические жидкости представляют собой многокомпонентные растворы, в которых осмотическое давление всех растворенных частиц пропорционально их общей концентрации. При интоксикациях осмотическое давление внутри и вне клеток за счет попадания во внутреннюю среду молекул токсикантов практически не изменяется. Тем не менее это явление имеет определенное токсикологическое значение.

Клетки организма ведут себя, как осмометр, снабженный полупроницаемой мембраной. Если они взаимодействуют с гипоосматической средой, внутрь клеток поступает вода. В результате увеличивается их объем. При значительном увеличении объема клеточная мембрана разрушается, клеточное содержимое выходит в среду. Это явления называется цитолизом (для эритроцитов - гемолизом). Вещества, нарушающие эластичность биологических мембран (мышьяковистый водород, сурьмянистый водород и др.), снижают резистентность клеток к колебаниям осмотического давления среды и вызывает гемолиз. Реакция антиген-антитело может приводить к существенному изменению проницаемости клеточных мембран, а это в свою очередь также становится причиной лизиса клеток. В гиперосмотической среде клетки отдают воду, и объем их уменьшается (в крови появляются "звездчатые" эритроциты).

В целом явление осмоса оказывает несущественное влияние на токсикокинетические характеристики ксенобиотиков. Однако при назначении осмотических диуретиков удается существенно повысить интенсивность процесса отделения мочи путем увеличения осмотического давления жидкости внутри почечных канальцев, и затруднения тем самым реабсорбции воды. В этих условиях ускоряется процесс элиминации выделяемых через почки некоторых ксенобиотиков и продуктов их метаболизма.

4. Фильтрация

Под фильтрацией понимают процесс просачивания жидкости с растворенными в ней молекулами веществ под действием механической силы (гидростатическое, осмотическое давление) через пористые мембраны, задерживающие крупнодисперсные частицы. Размер фильтруемых частиц определяется размерами пор мембраны. Поскольку диаметр пор биологических мембран мал, в организме путем фильтрации разделяются не только грубодисперсные "частицы" (клетки крови), но и растворенные в биологических жидкостях молекулы (ультрафильтрация).

Скорость фильтрации или объем жидкости, проходящий через пористую мембрану за единицу времени зависит от:

1. Различия гидростатического давления по обе стороны мембраны, т.е. градиента давления;

2. Вязкости жидкости, которая в свою очередь, зависит от температуры;

3. Проницаемости мембраны, которая определяется размерами пор, их числом, структурой, особенностями взаимодействия стенки мембраны с жидкостью;

4. Площади фильтрующей поверхности.

На скорость фильтрации ксенобиотиков в органах, кроме того, влияют дополнительные факторы:

1. Детерминированные свойствами организма: давление крови, количество функционирующих фильтрующих образований (капилляров, почечных клубочков и т.д.);

2. Обусловленные свойствами веществ: размеры и форма молекул, особенности взаимодействия с порами.

Фильтрация осуществляется главным образом в капиллярном отделе кровеносного русла: капилляры проницаемы для низкомолекулярных веществ. На принципе фильтрации основана работа гломерулярного аппарата почек, в котором происходит образование первичной мочи. Путем фильтрации из организма выделяется подавляющее большинство ксенобиотиков.

4.1. Капиллярная фильтрация

На распределение жидкости между интра- и экстравазальным пространствами тканей влияют следующие факторы:

- давление крови в капиллярном русле (рк);

- давление жидкости вне капиллярного русла (ртк);

- колоидосмотическое давление крови ( к);

- колоидосмотическое давление тканевой жидкости ( тк).

Результирующее давление определяется как:

Рэф = рк - ртк - к + тк

На рисунке 4 схематично представлен обмен жидкостью между капиллярным руслом и тканями. Давление крови в артериальном отделе капилляра составляет около 32 мм Hg, в венозном - 17 мм Hg, давление тканевой жидкости - 3 мм Hg. Колоидосмотическое давление крови равно 25 мм Hg и тканевой жидкости - 5 мм Hg. Следовательно, эффективное давление в артериальном отделе капилляра составляет около +9 мм Hg, в венозном - -6 мм Hg. Это означает, что в артериальном отделе капилляра происходит фильтрация, а в венозном - реабсорбция жидкости. В итоге, движение жидкости через стенку сосуда зависит от разницы р - , а 90% отфильтрованной в артериальной части капилляра жидкости возвращается в венозном отделе обратно в капиллярное русло. Абсорбция не реабсорбировавшихся 10% жидкости удаляется из тканей по лимфатическим сосудам.

Из этого следует, что при введении веществ непосредственно в кровь, они активно фильтруются в ткани, и наоборот, вещества попадающие в межклеточное пространство, например при подкожном или накожном введении - активно абсорбируются в кровяное русло. В основе действия веществ, усиливающих или блокирующих проницаемость капилляров, лежит не только способность изменять размеры и количество пор в стенке сосуда, но и влияние на диаметр капилляров в артериальном и венозном отделах, т.е внутрикапиллярное давление.

 

Рисунок 4. Обмен жидкости между капилляром и окружающей тканью