Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
токсиканты вопрос 27.doc
Скачиваний:
8
Добавлен:
08.05.2019
Размер:
929.79 Кб
Скачать

3.2.2. Хроническая экотоксичность

С хронической токсичностью веществ, как правило, ассоциируются сублетальные эффекты. Часто при этом подразумевают нарушение репродуктивных функций, иммунные сдвиги, эндокринную патологию, пороки развития, аллергизацию и т.д. Однако хроническое воздействие токсиканта может приводить и к смертельным исходам среди особей отдельных видов.

Проявления действия экотоксикантов на человека могут быть самыми разнообразными и при определенных уровнях интенсивности воздействия оказываются достаточно специфичными для действующего фактора. Это можно проследить на примере тяжелых металлов (таблица 5).

Таблица 5. Влияние тяжелых металлов питьевой воды и атмосферы окружающей среды на состояние здоровья (Колбасов С.Е. и соавторы, 1999)

Компоненты состава воды и воздуха

ПДК

Биологический эффект при избыточном поступлении в организм или превышении ПДК

(Биомаркеры ранней хронической интоксикации)

Алюминий

0,5 мг/л

Нейротоксическое действие

Барий

0,1 мг/л

Воздействие на сердечно-сосудистую и кроветворную системы

Бериллий

0,001 мг/м3

Бериллиоз, легочная и сердечная недостаточность, дерматит, конъюнктивит

(Развитие в легких диссеминированного гранулематозного процесса с клиникой бронхиолита)

Бор

0,5 мг/л

Снижение репродуктивной функции у мужчин, нарушение овариально-менструального цикла (ОМЦ) у женщин, углеводного обмена, активности ферментов, раздражение желудочно-кишечного тракта

Железо

0,3 мг/л

Аллергические реакции, болезни крови

Кадмий

0,001 мг/л

Болезнь УИтай-итайФ, увеличение кардиоваскулярных заболеваний (КВЗ), почечной, онкологической заболеваемости (ОЗ), нарушение ОМЦ, течения беременности и родов, мертворождаемость, повреждение костной ткани, поражение дыхательных путей

(Желтая кайма на деснах и вокруг шейки зуба)

Кобальт

0,1 мг/л

0,5 мг/м3

Нарушение функционального состояния ЦНС и щитовидной железы

(Хронический ринофаринголарингит с гипо- и аносмией)

Марганец

0,1 мг/л

0,3 мг/м3

Анемия, нарушение функционального состояния ЦНС (Астенические расстройства: утомляемость, сонливость, снижение активности)

Медь

1,0 мг/л

Наличие врожденных заболеваний, изменение водно-солевого и белкового обменов, окислительно-восстановительных реакций крови, нарушение ОМЦ, течения родов и лактации, поражение печени и почек

Молибден

0,25 мг/л

Увенличение КВЗ, заболеваемости подагрой, эндемическим зобом, нарушение ОМЦ

Мышьяк

0,05 мг/л

0,05 мг/м3

Арсеноз, нейротоксическое действие, поражение кожи, ОЗ

(Трофические поражения кожи - пигментация, шелушение, гиперкератозы, выпадение волос)

Никель

0,1 мг/л

0,5 мг/м3

Поражение сердца, печени, ОЗ, кератиты

(Поражения верхних дыхательных путей - хронические субатрофические ринофарингиты, гипо- и аносмия; аллергодерматозы; серый налет по краю десен)

Ртуть

0,0005мг/л

0,01 мг/м3

Нарушение функции почек, нервной системы, зрения, слуха, осязания, врожденные пороки развития

(Вегетативно-сосудистая дистония, неврастения)

Свинец

0,03 мг/л

0,01 мг/м3

Поражение почек, нервной системы, органов кроветворения, КВЗ, авитаминозы С и В

(Снижение активности дегидратазы аминолевулиновой кислоты крови до 10 мкмоль/мин л; увеличение содержания в моче АЛК до 114 мкмоль/г и копропорфирина до 458 нмоль/г; изменение уровня андрогенов)

Селен

 

Ускорение кариеса зубов у детей, ОЗ

Стронций

7,0 мг/л

Стронциевый рахит

Таллий

0,01 мг/м3

Поражение нервной системы, желудочно-кишечного тракта, печени, почек

(Утомляемость, головные боли. плохой сон, боли в конечностях, диспептические расстройства)

Хром

0,5 мг/л

0,01 мг/м3

Дерматиты, экземы (Ухромовые язвыФ), бронхиты, нарушения функций печени, почек

(Раздражение верхних дыхательных путей. аллергические поражения кожи и органов дыхания)

Цинк

1,0 мг/л

Анемия, изменения функций ЦНС, поражение почек, увеличение частоты заболеваний печени и КВЗ

В большинстве случаев экотоксиколог сталкивается со случаями именно хронической экотоксичности. По сути, хроническое воздействие экополлютантов - основная проблема экологии.

3.2.3. Механизмы экотоксичности

В современной литературе приводятся многочисленные примеры механизмов действия химических веществ на живую природу, позволяющие оценить их сложность и неожиданность.

1. Прямое действие токсикантов, приводящее к массовой гибели представителей чувствительных видов. Применение эффективных пестицидов приводит к массовой гибели вредителей: насекомых (инсектициды) или сорняков (гербициды). На этом экотоксическом эффекте строится стратегия использование химикатов. Однако в ряде случаев отмечаются сопутствующие негативные явления. Так в Швеции, в 50-60 гг. для обработки семян зерновых культур широко использовали метилртутьдицианамид. Концентрация ртути в зерне составляла более 10 мг/кг. Периодическое склевывание протравленного семенного зерна птицами привело к тому, что через несколько лет была отмечена массовая гибель фазанов, голубей, куропаток и других зерноядных пернатых от хронической интоксикации ртутью.

При оценке экологической обстановки необходимо иметь в виду основной закон токсикологии: чувствительность различных видов живых организмов к химическим веществам всегда различна. Поэтому появление поллютанта в окружающей среде даже в малых количествах может быть пагубным для представителей наиболее чувствительного вида. Так, хлорид свинца убивает дафний в течение суток при содержании его в воде в концентрации около 0,01 мг/л, малоопасной для представителей других видов.

2. Прямое действие ксенобиотика, приводящее к развитию аллобиотических состояний и специальных форм токсического процесса. В конце 80-х годов в результате вирусных инфекций в Балтийском, Северном и Ирландском морях погибло около 18 тысяч тюленей. В тканях погибших животных находили высокое содержание полихлорированных бифенилов (ПХБ). Известно, что ПХБ, как и другие хлорсодержащие соединения, такие как ДДТ, гексахлорбензол, диелдрин обладают иммуносупрессивным действием на млекопитающих. Их накопление в организме и привело к снижению резистентности тюленей к инфекции. Таким образом, непосредственно не вызывая гибели животных, поллютант существенно повышал их чувствительность к действию других неблагоприятных экологических факторов.

Классическим примером данной формы экотоксического действия является увеличение числа новообразований, снижение репродуктивных возможностей в популяциях людей, проживающих в регионах, загрязненных экотоксикантами (территории Южного Вьетнама - диоксин).

3. Эмбриотоксическое действие экополлютантов. Хорошо установлено, что ДДТ, накапливаясь в тканях птиц, таких как кряква, скопа, белоголовый орлан и др., приводит к истончению скорлупы яиц. В итоге птенцы не могут быть высижены и погибают. Это сопровождается снижением численности популяции птиц.

Примеры токсического действия различных ксенобиотиков (в том числе лекарственных препаратов) на эмбрионы человека и млекопитающих широко известны (см. раздел УТератогенезФ).

4. Прямое действие продукта биотрансформации поллютанта с необычным эффектом. Полевые наблюдения за живородящими рыбами (карпозубые) в штате Флорида позволили выявить популяции с большим количеством самок с явными признаками маскулинизации (своеобразное поведение, модификация анального плавника и т.д.). Эти популяции были обнаружены в реке, ниже стока завода по переработке орехов. Первоначально предположили, что стоки содержат маскулинизирующие вещества. Однако исследования показали, что такие вещества в выбросах отсутствуют: сточная вода не вызывала маскулинизацию. Далее было установлено, что в сточных водах содержался фитостерон, (образуется в процессе переработки сырья), который попав в воду реки подвергался воздействию обитающих здесь бактерий и превращался при их участии в андроген. Последний и вызывал неблагоприятный эффект (рисунок 3).

Рисунок 3. Превращение фитостерола в андроген при участии микроорганизмов.

Таким образом, взаимодействие ксенобиотика с биотическим компонентом среды (микроорганизмы) может стать причиной существенных популяционных эффектов в биоценозе.

5. Опосредованное действие путем сокращения пищевых ресурсов среды обитания. Для борьбы с вредителями лесного хозяйства, гусеницами елового листовертки-почкоеда в одном из регионов Канады применили фосфорорганический пестицид, быстро деградирующий в среде. В результате резкого снижения числа гусениц от бескормицы погибло около 12 млн птиц.

6. Взрыв численности популяции вследствие уничтожения вида-конкурента.

В США после начала применения синтетических пестицидов для борьбы с некоторыми видами вредителей растений стали интенсивно размножаться малочисленные ранее виды клещей-хлопкоедов. Количество опасных видов таких клещей увеличилось с 6 до 16. Это явление объясняют тем, что в мире насекомых существует сложная система взаимоотношений, и количество особей в популяции растительноядных насекомых зачастую контролируется другими видами, которые либо паразитируют на этих насекомых, либо ведут себя по отношению к ним как хищники. Воздействие пестицидов может оказаться более выраженным на представителей видов-хищников. В итоге - гибель врагов приводит к взрыву численности растительноядных насекомых.

Нетрудно заметить, что приведенные в качестве примеров механизмы экотоксического действия веществ на животных при иных условиях вполне могут реализоваться и в отношении человека.

4. Экотоксикометрия

4.1. Общая методология

Экотоксикометрия - раздел экотоксикологии, в рамках которого рассматриваются методические приемы позволяющие оценить (перспективно или ретроспективно) экотоксичнсоть ксенобиотиков.

Все виды классических количественных токсикологических исследований в полной мере используются для определения экотоксичности ксенобиотиков (см раздел УТоксикометрияФ).

Острая токсичность экополлютантов определяется экспериментально на нескольких видах, являющихся представителями различных уровней трофической организации в экосистеме (водоросли, растения, беспозвоночные, рыбы, птицы, млекопитающие). Агентство по защите окружающей среды США требует при определении критериев качества воды, содержащей некий токсикант, определения его токсичности, по крайней мере, на 8 различных видах пресноводных и морских организмов (16 тестов).

Неоднократно делались попытки ранжировать виды живых существ по их чувствительности к ксенобиотикам. Однако для различных токсикантов соотношение чувствительности к ним живых существ различно. Более того, использование в экотоксикологии Устандартных видовФ представителей определенных уровней экологической организации, для определения экотоксичности ксенобиотиков, с научной точки зрения, не корректно, поскольку чувствительность животных даже близких видов, порой отличается очень существенно.

Условные данные для оценки токсичности веществ для биоты представлены в таблице 6.

Таблица 6. Группы токсичности ксенобиотиков для позвоночных животных

LC50 для рыб (мг/л)

LD50 для птиц и млекопитающих (мг/кг)

Степень токсичности

Пример

более 100

10 - 100

1 - 10

менее 1

более 5000

500 - 5000

50 - 500

менее 50

мало токсичные

умеренно токсичные

токсичные

высоко токсичные

барий

кадмий

дихлорбензол

алдрин

При оценке экотоксичности необходимо учитывать, что хотя практически все вещества могут вызывать острые токсические эффекты, хроническая токсичность выявляется далеко не у каждого соединения. Косвенной величиной, указывающей на степень опасности вещества при его хроническом действии, является соотношение концентраций, вызывающих острые (ЛК50) и хронические (порог токсического действия) эффекты. Если это соотношение менее 10, вещество рассматривается как малоопасное при хроническом воздействии (таблица 7).

Таблица 7. Острая и хроническая токсичность пестицидов для рыб (условия лаборатории)

Пестицид

ЛК50 (мкг/л)

Токсичность

Порог действия* (мкг/л)

Коэффициент опасности

эндосульфан

хлордекон

малатион

карбарил

166

10

3000

15000

высокая

высокая

токсичен

умеренная

4,3

0,3

340

378

39

33

8,8

40

*Пороговая концентрация вещества, по критерию Ухроническая токсичностьФ

При оценке хронической экотоксичности вещества необходимо учитывать следующие обстоятельства:

1. Определение коэффициента опасности является лишь самым первым шагом по определения экотоксического потенциала вещества. В условиях лаборатории пороговые концентрации хронического действия токсикантов определяют, оценивая показатели летальности, роста, репродуктивных способностей группы. Изучение других последствий хронического действия веществ порой может привести к иным числовым характеристикам.

2. Исследования токсичности проводят на животных, пригодных для содержания в условиях лаборатории. Получаемые при этом результаты нельзя рассматривать как абсолютные. Токсиканты могут вызывать хронические эффекты у одних видов, и не вызывать - у других.

3. Взаимодействие токсиканта с биотическими и абиотическими элементами окружающей среды может существенно сказаться на его токсичности в естественных условиях (см. выше). Однако это не подлежит изучению в условиях лаборатории.

Специфическим методом экотоксикометрии является метод оценки экологического риска.

4.2. Оценка экологического риска

Важнейшей характеристикой ксенобиотиков с позиции экотоксикологии является их экотоксическая опасность. Опасность - это потенциальная способность вещества в конкретных условиях вызывать повреждение биологических систем при попадании в окружающую среду. Потенциальная опасность вещества, определяется его стойкостью в окружающей среде (персистирование), способностью к биоаккумуляции (накопление в организмах животных и растений), величиной токсичности для представителей различных биологических видов.

Оценка экологического риска - это процесс определения вероятности развития неблагоприятных эффектов со стороны биогеоценозов (включая популяции человека) в результате изменений различных характеристик среды. Важным элементом оценки экологического риска является выявление опасности, связанной с возможным массивным воздействием на среду различных химических веществ (изменение естественного ксенобиотического профиля среды) и определение вероятности такого воздействия. В системе оценки экологического риска любое воздействие (будь то химический фактор или энергетическое поле), вызывающее изменения в биологических системах (как позитивные, так и негативные), называется стрессором. В этом смысле любой экотоксикант - несомненно стрессор.

Как правило оценка экологического риска проводится в форме заказного исследования, выполняемого с целью получения информации, носящей перспективный или ретроспективный характер, и необходимой заказчику (законодательные, управленческие структуры и т.д.) для принятия административных решений. Поэтому, в отличие от научных экотоксикологических исследований, в ходе которых рассматриваются объективные закономерности реакций биоценоза на действие стрессора, при определении экотоксического риска, в качестве объектов среды, подлежащих изучению и УзащитеФ, могут выступать характеристики биосистемы, имеющие антропоцентрическое значение, а порой и отдельные элементы окружающей человека природы, субъективно воспринимаемые общественным мнением, как весьма значимые.

Методология оценки экологического риска до конца не разработана. В подавляющем большинстве случаев её выводы носят качественный, описательный характер. Попытки внедрить методы количественной оценки сталкиваются с серьезными трудностями. Это обусловлено сложностью экосистем, комплексностью воздействия на среду стрессоров (не только химической, но и физической и биологический природы), недостаточной изученностью характеристик экотоксической опасности огромного количества ксенобиотиков, используемых человеком и т.д. В этой связи, по мнению самих экологов, в настоящее время оценка экологического риска в значительной степени является искусством.

Поскольку процедура оценки риска сложна и в значительной степени страдает известной неопределенностью, с целью стандартизации исследований, Агентство по Защите Окружающей среды США (EPA) разработало и утвердило план проведения таких работ. Он содержит описание последовательности решения задачи, организации и анализа данных, учета неопределенностей и допущений с целью получения в какой-то степени унифицированной приблизительной информации о вероятности развития неблагоприятных экологических эффектов.

Согласно этому плану оценка экологического риска включает этапы:

1. Формулирование проблемы и разработка плана анализа ситуации.

2. Анализ экологической ситуации.

3. Обработка данных, формирование выводов и представление материалов заказчику.

Этапы оценки экологического риска представлены на схеме 1.

Схема 1. Этапы оценки экологического риска.

5. Характеристика некоторых экотоксикантов, опасных для человека

Наибольшую опасность, как экотоксиканты, для человека представляют вещества, длительно сохраняющиеся в окружающей среде и организме и способные, действуя в малых дозах, инициировать хронические интоксикации, аллобиотические состояния и специальные формы токсического процесса. К числу таких прежде всего относятся полигалогенированные ароматическкие углеводороды и некоторые металлы.

5.1. Полигалогенированные ароматические углеводороды

Группа полигалогенированных полициклических углеводородов включает галогенпроизводные некоторых ароматических углеводородов, например, диоксина, дибензофурана, бифенила, бензола и др.

Галогенированные токсиканты, содержащие один атом кислорода в молекуле, называют дибензофуранами, два атома - диоксинами, если вещества не содержит кислорода - это бифенилы (рисунок 4). Атомы галогенов (хлора или брома) замещают один и более атомов водорода, входящих в структуру бензольных колец.

Рисунок 4. Структура молекул некоторых полициклических углеводородов

Вещества могут образовываться при взаимодействии хлора с ароматическими углеводородами в кислородной среде, в частности, при хлорировании питьевой воды.

К другим источникам веществ относятся: термическое разложение различных химических продуктов, сжигание осадков сточных вод и других отходов, металлургическая промышленность, выхлопные газы автомобилей, возгорание электрического оборудования, лесные пожары, и наконец производство некоторых видов продукции (см. ниже).

5.1.1. Диоксины

Разнообразие химической структуры диоксинов определяется числом атомов и типом галогена, возможностью изомерии. В настоящее время насчитывается несколько десятков семейств этих ядов, а общее число соединений превышает 1 тыс.

2,3,7,8-тетрахлордибензо-пара-диоксин (ТХДД, УдиоксинФ) - самый токсичный представитель группы.

При оценке токсичности 2,3,7,8-тетрахлордибензо-пара-диоксина выявляются значительные межвидовые различия (таблица 8).

Таблица 8. Токсичность диоксина для разных видов животных.

Вид животного

ЛД50, мкг/кг

Морская свинка

0,6-2,5

Норка

4

Крыса

22-45

Обезьяна

менее 70

Кролик

115-275

Мышь

114-280

Собака

менее 300

Лягушка-бык

менее 500

Хомяк

5000

Примечание: токсичность ТХДД для человека, по-видимому, сопоставима с таковой для приматов.

Вещество образуется как побочный продукт в процессе синтеза 2,4,5-трихлофеноксиуксусной кислоты и трихлорфенола.

Во второй половине 20 столетия зарегистрированы более 200 аварий и инцидентов на предприятиях по производству хлорированных фенолов, при которых отмечался выброс ТХДД в атмосферу. Самая крупная - авария в Севезо (Италия, 1976 г). За последние 40 лет в результате аварий на таких производствах пострадало более 1500 человек. Экологические последствия действия веществ могут оказаться значительно более существенными.

Примером неблагоприятного воздействия на экосистемы ТХДД является химическая война во Вьетнаме, где американцы и их союзники применили не менее 100 тыс. тонн гербицидов. При этом в окружающую среду поступило 200-500 кг диоксина (более 1 109 смертельных доз для приматов).

ТХДД представляет собой кристаллическое вещество. Хорошо растворяется в липидах и органических растворителях, особенно в хлорбензоле. В воде не растворим. Практически не летуч.

Вещество отличается необычайной стойкостью, накапливается в объектах внешней среды, организмах животных, передается по пищевым цепям. Диоксин относят к УсуперэкотоксикантамФ.

Во внешней среде ТХДД абсорбируются на органических, пылевых и аэрозольных частицах, разносятся воздушными потоками, поступают в водные экосистемы. В донных отложениях стоячих водоемов яд может сохраняться десятки лет. В почве возможна медленная микробная деградация диоксинов. Период полуэлиминации из почвы определяется конкретными климато-географическими условиями и характером почвы.

В Российской Федерации установлен единый регламент на содержание полихлорированных дибензо-пара-диоксинов и дибензофуранов в почве - 0,133 пг/г.

Ежесуточное предельно допустимое поступление диоксина в организм человека в разных странах определено по-разному: от 1 до 200 пг/кг массы.

Токсикокинетика. Диоксины, поступившие в организм с зараженной пищей или ингаляционно, подвергаются медленной биотрансформации. Значительная часть токсикантов накапливается в жировой ткани. Через 15 лет после окончания химической войны содержание ТХДД в жировой ткани жителей зараженных районов Вьетнама было в 3-4 раза выше, чем у жителей Европы и США (Schecter et al., 1989).

Период полувыведения 2,3,7,8 - ТХДД у представителей разных видов не одинаков. Он составляет: у мышей, хомяков (в днях) - 15; крыс - 30; морских свинок - 30-94; обезьян - 455; у человека - 2120 (5-7 лет) (Федоров Л.А., 1993).

Токсикодинамика. Для токсического процесса характерен продолжительный скрытый период. После введения яда в летальных дозах грызунам гибель развивается спустя 3 и более недель. У крупных животных этот период еще более продолжителен. Течение даже острого поражения крайне вялое и растягивается на месяцы.

У разных биологических видов выявляются особенности проявления токсического процесса (таблтца 9).

Таблица 9. Проявления поражений диоксином у представителей различных видов млекопитающих

Эффект

Человек

Обезьяна

М.свинка

Мышь

Цыпленок

Крыса

Хлоракне

+

+

-

-

-

-

Потеря веса

+

+

+

+

+

+

Поражение печени

+

+

_

+

+

+

Отеки

+

+

-

+

+

-

Атрофия тимуса

+

+

+

+

+

+

В клинической картине вначале преобладает синдром общей интоксикации (истощение, анорексия, общее угнетение, адинамия, эозинопения, лимфопения, лейкоцитоз). Позднее присоединяются симптомы органоспецифической патологии (гиперплазия и/или метаплазия эпидермальных производных кожи, поражение печени, тканей иммунокомпетентных систем, проявления панцитопенического синдрома и др.).

Характерно эмбриотоксическое и тератогенное действие. ТХДД - канцероген.

У людей наиболее ранним и наиболее частым признаком поражения является хлоракне. Нередко это единственный эквивалент токсического воздействия диоксином. Поражение может сохраняться длительно, особенно в условиях промышленного производства, когда трудно определить возможность повторного контакта с ядом. По-видимому, минимальный срок сохранения хлоракне - 10 лет.

Как результат контакта с диоксином у жителей неблагополучных районов Южного Вьетнама часто выявлялся астенический синдром, болезни гепатобилиарной системы, болезни кожи и подкожной жировой клетчатки, заболевания ЛОР-органов, зоб, врожденные пороки развития. Частота самопроизвольных абортов на зараженной территории возросла в 2,2-2,9 раз, частота врожденных пороков развития увеличилась в 12,7 раз.

Австралийская Королевская комиссия оценила последствия воздействия оранжевого агента на ветеранов войны во Вьетнаме и их потомство. Получены данные о высокой перинатальной и ранней смертности среди детей ветеранов.